共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing 总被引:1,自引:0,他引:1
Godin LM Vergen J Prakash YS Pagano RE Hubmayr RD 《American journal of physiology. Lung cellular and molecular physiology》2011,300(4):L615-L623
Alveolar epithelial type I cell (ATI) wounding is prevalent in ventilator-injured lungs and likely contributes to pathogenesis of "barotrauma" and "biotrauma." In experimental models most wounded alveolar cells repair plasma membrane (PM) defects and survive insults. Considering the force balance between edge energy at the PM wound margins and adhesive interactions of the lipid bilayer with the underlying cytoskeleton (CSK), we tested the hypothesis that subcortical actin depolymerization is a key facilitator of PM repair. Using real-time fluorescence imaging of primary rat ATI transfected with a live cell actin-green fluorescent protein construct (Lifeact-GFP) and loaded with N-rhodamine phosphatidylethanolamine (PE), we examined the spatial and temporal coordination between cytoskeletal remodeling and PM repair following micropuncture. Membrane integrity was inferred from the fluorescence intensity profiles of the cytosolic label calcein AM. Wounding led to rapid depolymerization of the actin CSK near the wound site, concurrent with accumulation of endomembrane-derived N-rhodamine PE. Both responses were sustained until PM integrity was reestablished, which typically occurs between ~10 and 40 s after micropuncture. Only thereafter did the actin CSK near the wound begin to repolymerize, while the rate of endomembrane lipid accumulation decreased. Between 60 and 90 s after successful PM repair, after translocation of the actin nucleation factor cortactin, a dense actin fiber network formed. In cells that did not survive micropuncture injury, actin remodeling did not occur. These novel results highlight the importance of actin remodeling in ATI cell repair and suggest molecular targets for modulating the repair process. 相似文献
2.
Upadhyay D Correa-Meyer E Sznajder JI Kamp DW 《American journal of physiology. Lung cellular and molecular physiology》2003,284(2):L350-L359
Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycles/min) caused AEC DNA strand break formation, as assessed by alkaline unwinding technique and DNA nucleosomal fragmentation. Pretreatment of AEC with FGF-10 (10 ng/ml) blocked stretch-induced DNA strand break formation and DNA fragmentation. FGF-10 activated AEC mitogen-activated protein kinase (MAPK), and MAPK inhibitors prevented FGF-10-induced AEC MAPK activation and abolished the protective effects of FGF-10 against stretch-induced DNA damage. In addition, a Grb2-SOS inhibitor (SH(3)b-p peptide), a RAS inhibitor (farnesyl transferase inhibitor 277), and a RAF-1 inhibitor (forskolin) each prevented FGF-10-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in AEC. Moreover, N17-A549 cells that express a RAS dominant/negative protein prevented the FGF-10-induced ERK1/2 phosphorylation and RAS activation in AEC. We conclude that cyclic stretch causes AEC DNA damage and that FGF-10 attenuates these effects by mechanisms involving MAPK activation via the Grb2-SOS/Ras/RAF-1/ERK1/2 pathway. 相似文献
3.
Zhao J He D Berdyshev E Zhong M Salgia R Morris AJ Smyth SS Natarajan V Zhao Y 《The Biochemical journal》2011,439(1):45-55
Lung cell migration is a crucial step for re-epithelialization that in turn is essential for remodelling and repair after lung injury. In the present paper we hypothesize that secreted ATX (autotaxin), which exhibits lysoPLD (lysophospholipase D) activity, stimulates lung epithelial cell migration through LPA (lysophosphatidic acid) generation-dependent and -independent pathways. Release of endogenous ATX protein and activity was detected in lung epithelial cell culture medium. ATX with V5 tag overexpressed conditional medium had higher LPA levels compared with control medium and stimulated cell migration through G(αi)-coupled LPA receptors, cytoskeleton rearrangement, phosphorylation of PKC (protein kinase C) δ and cortactin at the leading edge of migrating cells. Inhibition of PKCδ attenuated ATX-V5 overexpressed conditional medium-mediated phosphorylation of cortactin. In addition, a recombinant ATX mutant, lacking lysoPLD activity, or heat-inactived ATX also induced lung epithelial cell migration. Extracelluar ATX bound to the LPA receptor and integrin β4 complex on A549 cell surface. Finally, intratracheal administration of LPS (lipopolysaccharide) into the mouse airway induced ATX release and LPA production in BAL (bronchoalveolar lavage) fluid. These results suggested a significant role for ATX in lung epithelial cell migration and remodelling through its ability to induce LPA production-mediated phosphorylation of PKCδ and cortactin. In addition we also demonstrated association of ATX with the epithelial cell-surface LPA receptor and integrin β4. 相似文献
4.
Zhangxue H Min G Jinning Z Yuan S li W Huapei S Rui L Chunyu Z 《Free radical biology & medicine》2012,53(1):122-128
Bile acid-induced lung injury has become an important topic for neonatologists after the discovery of a high incidence of infant respiratory distress syndrome complicated from maternal intrahepatic cholestasis. To explore the molecular pathway of bile acid-induced lung injury, we investigated the cytotoxicity of the glycochenodeoxycholate (GCDC) to alveolar epithelial type II cells (AECII), as the main component of bile acid. The results demonstrated that glycochenodeoxycholate induced oxidative stress, mitochondrial damage, and increased caspase activity in the primary cultured AECII. Moreover, ROS scavengers and caspase inhibitors could rescue cell death induced by GCDC in rat AECII. Our results also indicated that GCDC inhibited AECII surfactant secretion. In conclusion, this study suggested that cell death prevention and cell therapy should be considered as therapeutic strategies for infant respiratory distress syndrome complicated from maternal intrahepatic cholestasis. 相似文献
5.
The mechanical and adhesive properties of cancer cells significantly change during tumor progression. Here we assess the functional consequences of mismatched stiffness and adhesive properties between neighboring normal cells on cancer cell migration in an epithelial-like cell monolayer. Using an in vitro coculture system and live-cell imaging, we find that the speed of single, mechanically soft breast carcinoma cells is dramatically enhanced by surrounding stiff nontransformed cells compared with single cells or a monolayer of carcinoma cells. Soft tumor cells undergo a mode of pulsating migration that is distinct from conventional mesenchymal and amoeboid migration, whereby long-lived episodes of slow, random migration are interlaced with short-lived episodes of extremely fast, directed migration, whereas the surrounding stiff cells show little net migration. This bursty migration is induced by the intermittent, myosin II-mediated deformation of the soft nucleus of the cancer cell, which is induced by the transient crowding of the stiff nuclei of the surrounding nontransformed cells, whose movements depend directly on the cadherin-mediated mismatched adhesion between normal and cancer cells as well as α-catenin-based intercellular adhesion of the normal cells. These results suggest that a mechanical and adhesive mismatch between transformed and nontransformed cells in a cell monolayer can trigger enhanced pulsating migration. These results shed light on the role of stiff epithelial cells that neighbor individual cancer cells in early steps of cancer dissemination. 相似文献
6.
We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs. 相似文献
7.
Roan E Wilhelm K Bada A Makena PS Gorantla VK Sinclair SE Waters CM 《American journal of physiology. Lung cellular and molecular physiology》2012,302(12):L1235-L1241
Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability. 相似文献
8.
The aim of this study was to investigate whether transforming growth factor-beta1 (TGF-beta1) could induce alveolar epithelial to mesenchymal transition (EMT) in vitro. Alveolar epithelial cells (AECs) from SD rats were isolated by elastase cell dispersion and IgG panning. Expression of alpha-smooth muscle actin (alpha-SMA) was assayed using Western blotting and immunostaining analysis. Morphological changes, the markers of epithelial cell (E-cadherin), and stress fiber by actin reorganization were detected by an indirect immunostaining. The contents of collagen I were determined by spectrophotometry. The levels of endogenous TGF-beta1 were measured with ELISA. Incubation of AECs with TGF-beta1 (0.1 approximately 10 ng/mL) induced abundant expression of alpha-SMA protein, and alpha-SMA expression in AECs reached a plateau when TGF-beta1 was > 3 ng/mL. Furthermore, we found that TGF-beta1 (3 ng/mL) exposure of AECs induced an authentic EMT characterized by abundant expression of alpha-smooth muscle actin, transformation of myofibroblastic morphology, increased formation of stress fiber by actin reorganization, and loss of epithelial marker E-cadherin. Meanwhile, significant increase in the levels of collagen I from 32.0 +/- 6.6 mg/g in control to 98 +/- 10.8 mg/g in TGF-beta1-treated group was found over a 72 h incubation period. Moreover, following stimulated by TGF-beta1 (3 ng/mL), a marked and time-dependent increase in endogenous TGF-beta1 released from AECs was observed. At time points 72 h, TGF-beta1 release mounted to 3451 pg/ml, which was much enough to induce EMT in vitro. These results demonstrated that AECs, under stimulation of TGF-beta1, underwent a conversion process into myofibroblasts in vitro. 相似文献
9.
Joseph D Tirmizi O Zhang XL Crandall ED Lubman RL 《American journal of physiology. Lung cellular and molecular physiology》2002,282(4):L675-L683
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ. 相似文献
10.
Ju Gao Tao Huang Luo-Jing Zhou Ya-Li Ge Shun-Yan Lin Yan Dai 《Biochemical and biophysical research communications》2014
Background
We aim to investigate the effects of preconditioning of physiological cyclic stretch on the alveolar epithelial cell apoptosis induced by pathologically mechanical stretch and barrier dysfunction and how these effects are linked to differential expression of small GTPases Rac and Rho mRNA.Methods
Pulmonary alveolar epithelial cells were subjected to different treatments of cyclic stretch (CS) at 5% and 20% elongation, respectively. Cells maintained in normal cell culture were used as negative control. On the other hand, cell apoptosis and Rac/Rho activities in cells with or without preconditioning of physiologically relevant magnitudes of CS (5% CS) with different durations (0, 15, 30, 60 and 120 min) in prior to 6-h treatment with pathological CS stimulation (20% CS) were compared and measured.Results
Pathological CS could cause a significant increase in apoptosis rate, which is considered to be associated with the repression of Rac mRNA and activation of Rho mRNA. In contrast, physiological 5%-CS preconditioning suppressed cell apoptosis and induced nearly complete monolayer recovery with fewer actin stress fibers and paracellular gap formation. Consistent with differential effects on cell apoptosis and epithelial cell integrity, physiological CS preconditioning enhanced expression of Rac mRNA but inhibited Rho activation.Conclusions
Physiological CS preconditioning has an inhibitory effect on cell apoptosis while exerts a stimulatory impact on epithelial cell recovery via regulation of Rac and Rho activities. 相似文献11.
Trepat X Puig F Gavara N Fredberg JJ Farre R Navajas D 《American journal of physiology. Lung cellular and molecular physiology》2006,290(6):L1104-L1110
Alveolar epithelial cells in patients with acute lung injury subjected to mechanical ventilation are exposed to increased procoagulant activity and mechanical strain. Thrombin induces epithelial cell stiffening, contraction, and cytoskeletal remodeling, potentially compromising the balance of forces at the alveolar epithelium during cell stretching. This balance can be further compromised by the loss of integrity of cell-cell junctions in the injured epithelium. The aim of this work was to study the effect of stretch on the structural integrity and micromechanics of human alveolar epithelial cell monolayers exposed to thrombin. Confluent and subconfluent cells (A549) were cultured on collagen-coated elastic substrates. After exposure to thrombin (0.5 U/ml), a stepwise cell stretch (20%) was applied with a vacuum-driven system mounted on an inverted microscope. The structural integrity of the cell monolayers was assessed by comparing intercellular and intracellular strains within the monolayer. Strain was measured by tracking beads tightly bound to the cell surface. Simultaneously, cell viscoelasticity was measured using optical magnetic twisting cytometry. In confluent cells, thrombin did not induce significant changes in transmission of strain from the substrate to overlying cells. By contrast, thrombin dramatically impaired the ability of subconfluent cells to follow imposed substrate deformation. Upon substrate unstretching, thrombin-treated subconfluent cells exhibited compressive strain (9%). Stretch increased stiffness (56-62%) and decreased cell hysteresivity (13-22%) of vehicle cells. By contrast, stretch did not increase stiffness of thrombin-treated cells, suggesting disruption of cytoskeletal structures. Our findings suggest that thrombin could exacerbate epithelial barrier dysfunction in injured lungs subjected to mechanical ventilation. 相似文献
12.
Bargout R Jankov A Dincer E Wang R Komodromos T Ibarra-Sunga O Filippatos G Uhal BD 《American journal of physiology. Lung cellular and molecular physiology》2000,278(5):L1039-L1044
The antiarrhythmic amiodarone (AM) and its metabolite desethylamiodarone (Des) are known to cause AM-induced pulmonary toxicity, but the mechanisms underlying this disorder remain unclear. We hypothesized that AM might cause AM-induced pulmonary toxicity in part through the induction of apoptosis or necrosis in alveolar epithelial cells (AECs). Two models of type II pneumocytes, the human AEC-derived A549 cell line and primary AECs isolated from adult Wistar rats, were incubated with AM or Des for 20 h. Apoptotic cells were determined by morphological assessment of nuclear fragmentation with propidium iodide on ethanol-fixed cells. Necrotic cells were quantitated by loss of dye exclusion. Both AM and Des caused dose-dependent necrosis starting at 2.5 and 0.1 microg/ml, respectively, in primary rat AECs and at 10 and 5 microg/ml in subconfluent A549 cells (P < 0.05 and P < 0.01, respectively). AM and Des also induced dose-dependent apoptosis beginning at 2.5 microg/ml in the primary AECs (P < 0.05 for both compounds) and at 10 and 5 microg/ml, respectively, in the A549 cell line (P < 0.01). The two compounds also caused significant net cell loss (up to 80% over 20 h of incubation) by either cell type at drug concentrations near or below the therapeutic serum concentration for AM. The cell loss was not due to detachment but was blocked by the broad-spectrum caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Furthermore, the angiotensin-converting enzyme inhibitor captopril (500 ng/ml) and the angiotensin-receptor antagonist saralasin (50 microg/ml) significantly inhibited both the induction of apoptosis and net cell loss in response to AM. These results are consistent with recent work from this laboratory demonstrating potent inhibition of apoptosis in human AECs by captopril (Uhal BD, Gidea C, Bargout R, Bifero A, Ibarra-Sunga O, Papp M, Flynn K, and Filippatos G. Am J Physiol Lung Cell Mol Physiol 275: L1013-L1017, 1998). They also suggested that the accumulation of AM and/or its primary metabolite Des in lung tissue may induce cytotoxicity of AECs that might be inhibitable by angiotensin-converting enzyme inhibitors or other antagonists of the renin-angiotensin system. 相似文献
13.
Zhou WJ Geng ZH Chi S Zhang W Niu XF Lan SJ Ma L Yang X Wang LJ Ding YQ Geng JG 《Cell research》2011,21(4):609-626
The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis. 相似文献
14.
15.
Khondoker M Akram Sohel Samad Monica A Spiteri Nicholas R Forsyth 《Respiratory research》2013,14(1):9
Background
Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration.Methods
To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC.Results
We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and –independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model.Conclusion
These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders. 相似文献16.
17.
Cadherins are cell adhesion molecules involved in cell-cell adhesion, signalling, and cellular proliferation and differentiation. E-cadherin is required for the formation of epithelium in vivo. We investigated the contribution of the cytoplasmic domain of E-cadherin to adhesion, signalling, and differentiation during murine mammary gland development, by in vivo expression of a gene encoding a truncated form of E-cadherin lacking the extracellular domain. The expression of this gene in mammary epithelial cells during pregnancy induced precocious lobular epithelial morphogenesis associated with morphological differentiation and the early synthesis of various molecules (advanced milk fat globule appearance and milk protein production). After delivery, when a fully differentiated and secretory epithelium is required for lactation, the cytoplasmic domain of E-cadherin had a dominant-negative effect on cell-cell adhesion and affected the structure and function of the epithelium. This also led to the partial loss of epithelial polarisation and changes in the basement membrane, both important in malignancy. Thus, the cytoplasmic domain of E-cadherin induces epithelial morphogenesis, but also alters the cohesiveness of the fully differentiated epithelium. 相似文献
18.
Roflumilast-N-oxide induces surfactant protein expression in human alveolar epithelial cells type II
K Höhne SJ Schließmann A Kirschbaum T Plönes J Müller-Quernheim H Tenor G Zissel 《PloS one》2012,7(7):e38369
Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 μM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation. 相似文献
19.
Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor 总被引:3,自引:0,他引:3
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility. 相似文献
20.
Intestinal epithelial antigen induces mucosal CD8 T cell tolerance, activation, and inflammatory response 总被引:4,自引:0,他引:4
Intestinal autoimmune diseases are thought to be associated with a breakdown in tolerance, leading to mucosal lymphocyte activation perhaps as a result of encounter with bacterium-derived Ag. To study mucosal CD8(+) T cell activation, tolerance, and polarization of autoimmune reactivity to self-Ag, we developed a novel (Fabpl(4x at -132)-OVA) transgenic mouse model expressing a truncated form of OVA in intestinal epithelia of the terminal ileum and colon. We found that OVA-specific CD8(+) T cells were partially tolerant to intestinal epithelium-derived OVA, because oral infection with Listeria monocytogenes-encoding OVA did not elicit an endogenous OVA-specific MHC class I tetramer(+)CD8(+) T cell response and IFN-gamma-, IL-4-, and IL-5-secreting T cells were decreased in the Peyer's patches, mesenteric lymph nodes, and intestinal mucosa of transgenic mice. Adoptive transfer of OVA-specific CD8(+) (OT-I) T cells resulted in their preferential expansion in the Peyer's patches and mesenteric lymph nodes and subsequently in the epithelia and lamina propria but failed to cause mucosal inflammation. Thus, CFSE-labeled OT-I cells greatly proliferated in these tissues by 5 days posttransfer. Strikingly, OT-I cell-transferred Fabpl(4x at -132)-OVA transgenic mice underwent a transient weight loss and developed a CD8(+) T cell-mediated acute enterocolitis 5 days after oral L. monocytogenes-encoding OVA infection. These findings indicate that intestinal epithelium-derived "self-Ag" gains access to the mucosal immune system, leading to Ag-specific T cell activation and clonal deletion. However, when Ag is presented in the context of bacterial infection, the associated inflammatory signals drive Ag-specific CD8(+) T cells to mediate intestinal immunopathology. 相似文献