首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: While it is established that mechanical heart valves (MHVs) damage blood elements during leakage and forward flow, the role in thrombus formation of platelet activation by high shear flow geometries remains unclear. In this study, continuously recalcified blood was used to measure the effects of blood flow through orifices, which model MHVs, on the generation of procoagulant thrombin and the resulting formation of thrombus. The contribution of platelets to this process was also assessed. METHOD OF APPROACH: 200, 400, 800, and 1200 microm orifices simulated the hinge region of bileaflet MHVs, and 200, 400, and 800 microm wide slits modeled the centerline where the two leaflets meet when the MHV is closed. To assess activation of coagulation during blood recirculation, samples were withdrawn over 0-47 min and the plasmas assayed for thrombin-antithrombin-llI (TAT) levels. Model geometries were also inspected visually. RESULTS: The 200 and 400 microm round orifices induced significant TAT generation and thrombosis over the study interval. In contrast, thrombin generation by the slit orifices, and by the 800 and 1200 microm round orifices, was negligible. In additional experiments with nonrecalcified or platelet-depleted blood, TAT levels were markedly reduced versus the studies with fully anticoagulated whole blood (p < 0.05). CONCLUSIONS: Using the present method, a significant increase in TAT concentration was found for 200 and 400 microm orifices, but not 800 and 1200 microm orifices, indicating that these flow geometries exhibit a critical threshold for activation of coagulation and resulting formation of thrombus. Markedly lower TAT levels were produced in studies with platelet-depleted blood, documenting a key role for platelets in the thrombotic process.  相似文献   

2.
Platelet - vessel wall interaction: role of blood clotting   总被引:2,自引:0,他引:2  
Vascular damage initiates not only the adhesion and aggregation of blood platelets but also coagulation, which is of mixed (intrinsic and extrinsic) origin. Evidence is presented that thrombin, generated as a result of the injury, is a prerequisite for platelet aggregation. Platelets, after activation, in their turn promote coagulation. Prostaglandin I2 (PGI2 or prostacyclin) inhibits coagulation induced by damaged vascular tissue. This effect of PGI2 is mediated by the inhibition of platelets in their participation in the generation of factor Xa and thrombin. Dietary cod liver oil, by changing plasma coagulability, decreases the procoagulation activity of vessel walls, and arterial thrombosis. Another fish oil with similar effects on plasma coagulability and some other haemostatic parameters does not modify vessel wall-induced clotting, nor does it significantly lower arterial thrombosis tendency; this indicates the physiological relevance of vessel wall-induced clotting in arterial thrombus formation. Some evidence is also given for the importance of vessel wall-induced clotting in primary haemostasis.  相似文献   

3.
Blood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly, in vitro clotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.  相似文献   

4.
Iron-bound fibrinogen has been noted to accelerate plasmatic coagulation in patients with divergent conditions involving upregulation of heme oxygenase activity, including hemodialysis, Alzheimer’s disease, sickle cell anemia, and chronic migraine. Our goal was to determine if a site of iron-fibrinogen interaction was on the alpha chain. Using thrombelastography, we compared the coagulation kinetic profiles of plasma exposed to 0–10 µM ferric chloride after activation of coagulation with thrombin generated by contact activation of plasma with the plastic sample cup or by exposure to 1 µg/ml of Calloselasma rhodostoma venom (rich in ancrod activity), which causes coagulation via polymerization of alpha chain monomers. Venom mediated coagulation always occurred before thrombin activated thrombus formation, and ferric chloride always diminished the time of onset of coagulation and increased the velocity of clot growth. Iron enhances plasmatic coagulation kinetics by modulating the alpha chain of fibrinogen.  相似文献   

5.
Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37 degrees C. Control animals revealed complete occlusion of arterioles and venules after 742 +/- 150 and 824 +/- 172 s, respectively. Systemic hypothermia of 34 degrees C accelerated thrombus formation in arterioles and venules (279 +/- 120 and 376 +/- 121 s; P < 0.05 vs. 37 degrees C). This was further pronounced after cooling to 31 degrees C (163 +/- 57 and 281 +/- 71 s; P < 0.05 vs. 37 degrees C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34 degrees C and 31 degrees C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37 degrees C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.  相似文献   

6.

False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid–structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection–diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young’s modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.

  相似文献   

7.
Animal models serve a vital role in deep venous thrombosis (DVT) research in order to study thrombus formation, thrombus resolution and to test potential therapeutic compounds. New compounds to be utilized in the treatment and prevention of DVT are currently being developed. The delivery of potential therapeutic antagonist compounds to an affected thrombosed vein has been problematic. In the context of therapeutic applications, a model that uses partial stasis and consistently generates thrombi within a major vein has been recently established. The Electrolytic Inferior vena cava Model (EIM) is mouse model of DVT that permits thrombus formation in the presence of continuous blood flow. This model allows therapeutic agents to be in contact with the thrombus in a dynamic fashion, and is more sensitive than other models of DVT. In addition, this thrombosis model closely simulates clinical situations of thrombus formation and is ideal to study venous endothelial cell activation, leukocyte migration, venous thrombogenesis, and to test therapeutic applications. The EIM model is technically simple, easily reproducible, creates consistent thrombi sizes and allows for a large sample (i.e. thrombus and vein wall) which is required for analytical purposes.  相似文献   

8.

Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood–brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.

  相似文献   

9.
Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4–7.1 µmol/kg (14–70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.  相似文献   

10.
Evidence for activation of tissue factor by an allosteric disulfide bond   总被引:12,自引:0,他引:12  
Chen VM  Ahamed J  Versteeg HH  Berndt MC  Ruf W  Hogg PJ 《Biochemistry》2006,45(39):12020-12028
Tissue Factor (TF) is the mammalian plasma membrane cofactor responsible for initiation of blood coagulation. Binding of blood coagulation factor VIIa to TF activates the serine proteinase zymogens factors IX and X by limited proteolysis leading to the formation of a thrombin and fibrin meshwork that stabilizes the thrombus. TF on the plasma membrane of cells resides mostly in a cryptic configuration, which rapidly transforms into an active configuration in response to certain stimuli. The extracellular part of TF consists of two fibronectin type III domains. The disulfide bond in the membrane proximal domain (Cys186-Cys209) is atypical for domains of this type in that it links adjacent strands in the same beta sheet, what we have called an allosteric bond. Ablation of the allosteric disulfide by mutating both cysteine residues severely impairs procoagulant activity. The thiol-alkylating agents N-ethylmaleimide and methyl methanethiolsulfonate block TF activation by ionomycin, while the thiol-oxidizing agent HgCl2 and dithiol cross-linkers promote activation. TF activation could not be explained by exposure of phosphatidylserine on the outer leaflet of the plasma membrane. Cryptic TF contained unpaired cysteine thiols that were depleted upon activation, and de-encryption was associated with a change in the conformation of the membrane-proximal domain. These findings imply that the Cys186-Cys209 disulfide bond is reduced in the cryptic form of TF and that activation involves formation of the disulfide. It is likely that formation of this disulfide bond changes the conformation of the domain that facilitates productive binding of factors IX and X.  相似文献   

11.
Platelets actively participate in regulating thrombin production following physical or chemical injury to blood vessels. Injury to blood vessels initiates activation of the large numbers of platelets that appear in the subendothelium where they become exposed to tissue factor and to molecules adhesive for platelets and normally found in the extracellular matrix. The complex of plasma factor VIIa with extravascular tissue factor both initiates and localizes thrombin production on platelets and on extravascular cells. Thrombin production at these sites in turn enhances platelet activation and the subsequent hemostatic plug formation to minimize bleeding. Thrombin production and platelet activation also initiate the process of wound healing requiring thrombin-dependent cell activation and platelet-dependent formation of new blood vessels (angiogenesis). Activated platelets release from their storage granules several proteins and other factors that regulate local thrombin formation and the responses of blood vessel cells to injury to assure hemostasis and effective wound healing. Failure to localize and adequately regulate thrombin production and/or platelet activation can have pathological consequences, including the development and propagation of atherosclerosis and enhancement of tumor development. The primary basis for the pathological consequences of the failure to adequately regulate thrombin production is that the multi-functional thrombin activates several types of cells to initiate their mitogenesis. Mitogenesis precedes many of the undesirable consequences of poorly regulated thrombin production and platelet activation. In addition, activated platelets release a variety of products which influence the functions of several cell types to the extent that inadequate regulation of platelet activation (by excessive thrombin production) could contribute to the pathogenesis of acute and chronic arterial thrombosis and to tumor development. Activated platelets participate in tumor development by releasing several factors that positively (and negatively) regulate blood vessel formation.  相似文献   

12.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

13.
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.  相似文献   

14.
Vascular injury triggers two intertwined processes, platelet deposition and coagulation, and can lead to the formation of an intravascular clot (thrombus) that may grow to occlude the vessel. Formation of the thrombus involves complex biochemical, biophysical, and biomechanical interactions that are also dynamic and spatially-distributed, and occur on multiple spatial and temporal scales. We previously developed a spatial-temporal mathematical model of these interactions and looked at the interplay between physical factors (flow, transport to the clot, platelet distribution within the blood) and biochemical ones in determining the growth of the clot. Here, we extend this model to include reduction of the advection and diffusion of the coagulation proteins in regions of the clot with high platelet number density. The effect of this reduction, in conjunction with limitations on fluid and platelet transport through dense regions of the clot can be profound. We found that hindered transport leads to the formation of smaller and denser clots compared to the case with no protein hindrance. The limitation on protein transport confines the important activating complexes to small regions in the interior of the thrombus and greatly reduces the supply of substrates to these complexes. Ultimately, this decreases the rate and amount of thrombin production and leads to greatly slowed growth and smaller thrombus size. Our results suggest a possible physical mechanism for limiting thrombus growth.  相似文献   

15.
Left ventricular assist device (LVAD) support disrupts the natural blood flow path through the heart, introducing flow patterns associated with thrombosis, especially in the presence of medical devices. The aim of this study was to quantitatively evaluate the flow patterns in the left ventricle (LV) of the LVAD-assisted heart, with a focus on alterations in vortex development and stasis. Particle image velocimetry of a LVAD-supported LV model was performed in a mock circulatory loop. In the Pre-LVAD flow condition, a vortex ring initiating from the LV base migrated toward the apex during diastole and remained in the LV by the end of ejection. During LVAD support, vortex formation was relatively unchanged although vortex circulation and kinetic energy increased with LVAD speed, particularly in systole. However, as pulsatility decreased and aortic valve opening ceased, a region of fluid stasis formed near the left ventricular outflow tract. These findings suggest that LVAD support does not substantially alter vortex dynamics unless cardiac function is minimal. The altered blood flow introduced by the LVAD results in stasis adjacent to the LV outflow tract, which increases the risk of thrombus formation in the heart.  相似文献   

16.
The objectives of present study were to investigate whether luteolin affects procoagulant proteinase activity and fibrin clot formation and influences thrombosis and coagulation in Sprague–Dawle rats. Luteolin significantly inhibited the enzymatic activity of thrombin and FXa activity by 29.1% and 16.2%. Luteolin also inhibited fibrin polymer formation in turbidity and microscopic analysis using fluorescent conjugate. Coagulation assay of luteolin was found to prolong activated partial thromboplastin time and prothrombin time. Moreover, luteolin protected the development of oxidative stress induced thrombosis in the FeCl3‐induced carotid arterial thrombus model. This study demonstrated that luteolin may be useful by reducing or preventing thrombotic challenge and can help us better understand the antithrombotic action of luteolin.  相似文献   

17.
Tortuous blood vessels are often seen in humans in association with thrombosis, atherosclerosis, hypertension, and aging. Vessel tortuosity can cause high fluid shear stress, likely promoting thrombosis. However, the underlying physical mechanisms and microscale processes are poorly understood. Accordingly, the objectives of this study were to develop and use a new computational approach to determine the effects of venule tortuosity and fluid velocity on thrombus initiation. The transport, collision, shear-induced activation, and receptor-ligand adhesion of individual platelets in thrombus formation were simulated using discrete element method. The shear-induced activation model assumed that a platelet became activated if it experienced a shear stress above a relative critical shear stress or if it contacted an activated platelet. Venules of various levels of tortuosity were simulated for a mean flow velocity of 0.10?cm s(-1), and a tortuous arteriole was simulated for a mean velocity of 0.47?cm s(-1). Our results showed that thrombus was initiated at inner walls in curved regions due to platelet activation in agreement with experimental studies. Increased venule tortuosity modified fluid flow to hasten thrombus initiation. Compared to the same sized venule, flow in the arteriole generated a higher amount of mural thrombi and platelet activation rate. The results suggest that the extent of tortuosity is an important factor in thrombus initiation in microvessels.  相似文献   

18.
Thrombin is the ultimate coagulation factor; it is the final protease generated in the blood coagulation cascade and is the effector of clot formation. Regulation of thrombin activity is thus of great relevance to determining the correct haemostatic balance, with dysregulation leading to bleeding or thrombosis. One of the most enigmatic and controversial regulators of thrombin activity is the monovalent cation Na+. When bound to Na+, thrombin adopts a 'fast' conformation which cleaves all procoagulant substrates more rapidly, and when free of Na+, thrombin reverts to a 'slow' state which preferentially activates the protein C anticoagulant pathway. Thus, Na+-binding allosterically modulates the activity of thrombin and helps determine the haemostatic balance. Over the last 30 years, there has been much research investigating the structural basis of thrombin allostery. Biochemical and mutagenesis studies established which regions and residues are involved in the slow-->fast conformational change, and recently several crystal structures of the putative slow form have been solved. In this article, the biochemical and crystallographic data are reviewed to see if we are any closer to understanding the conformational basis of the Na+ activation of thrombin.  相似文献   

19.
Recent evidence implicating tissue factor and the protein C pathway in the hypercoagulable state associated with intestinal inflammation suggests that thrombin is likely to contribute to this response. The objective of this study was to assess the role of thrombin in the extraintestinal thrombosis associated with experimental colitis. Thrombus formation was quantified in microvessels of the cremaster muscle in mice with dextran sodium sulfate (DSS)-induced colonic inflammation. The light/dye endothelial injury model was used to elicit thrombus formation in DSS colitic mice treated with either hirudin, heparin, or antithrombin III. The initiation and propagation/stabilization phases of thrombus formation were quantified using the time of onset of the thrombus and time to blood flow cessation, respectively. Thrombus formation was accelerated in arterioles of DSS colitic mice, as exhibited by significant reductions in the time of thrombus initiation and propagation/stabilization. Colitic mice treated with hirudin, heparin, or antithrombin III did not exhibit a significant change in the time of onset of the thrombus compared with untreated colitic mice. However, all three antithrombin agents largely prevented the DSS-induced reduction in the time to flow cessation following light/dye injury, with hirudin offering complete protection. These findings indicate that thrombin plays a major role in the extraintestinal thrombus formation associated with experimental colitis. Thrombin appears to contribute to the propagation/stabilization, rather than initiation, phase of the colitis-associated thrombogenesis at the distant vascular site. The results support the therapeutic use of antithrombin agents for reducing the risk of thromboembolism in patients with inflammatory bowel disease.  相似文献   

20.
组织因子是一种位于细胞膜上的糖蛋白,是外源性凝血过程的关键启动因子,近年来其在肿瘤细胞迁移等其他过程中的重要作用也已逐渐被揭示.构建了融合有His标签的小鼠组织因子胞外区段重组蛋白基因,利用昆虫杆状病毒蛋白表达系统成功表达并得到大量可溶性重组小鼠组织因子.利用血浆凝集实验和鼠尾流血时间实验对此重组小鼠组织因子进行的活性检测表明,此重组蛋白具有良好的生物活性,可以引起血浆凝血或缩短鼠尾流血时间.同时,利用此重组蛋白为抗原,制备了小鼠组织因子的小鼠源功能阻断性单克隆抗体,在血浆凝集实验中证明其对小鼠组织因子的活性有明显抑制作用.利用此阻断性单抗,成功地在小鼠深静脉血栓模型中减轻了血栓形成,证明组织因子在深静脉血栓的病程发展中起重要作用,这也是组织因子阻断性单抗在此类动物模型中的首次成功应用.通过此项工作,成功地建立了大量制备具有良好生物活性的重组小鼠组织因子蛋白的方法,并进而得到了小鼠组织因子功能阻断性单抗,为利用各种小鼠动物模型对组织因子在各项生命活动中的作用进行深入研究奠定了良好的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号