首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of traumatic and mild traumatic brain injury is an important factor in managing their prevention. Currently, the prediction of these injuries is limited to peak linear and angular acceleration loading curves derived from laboratory reconstructions. However it remains unclear as to what aspect of these loading curves contributes to brain tissue damage. This research uses the University College Dublin Brain Trauma Model (UCDBTM) to analyse three distinct loading curve shapes meant to represent different helmet loading scenarios. The loading curves were applied independently in each axis of linear and angular acceleration and their effect on currently used predictors of TBI and mTBI was examined. Loading curve shape A had a late time to peak, B an early time to peak and C had a consistent plateau. The areas under the curve for all three loading curve shapes were identical. The results indicate that loading curve A produced consistently higher maximum principal strains and Von Mises stress than the other two loading curve types. Loading curve C consistently produced the lowest values of maximum principal strain and Von Mises stress, with loading curve B being lowest in only 2 cases. The areas of peak Von Mises stress and Principal strain also varied depending on loading curve shape and acceleration input.  相似文献   

2.
The purpose of this study was to assess the protective capacity of an ice hockey goaltender helmet for three concussive impact events. A helmeted and unhelmeted headform was used to test three common impact events in ice hockey (fall, puck impacts and shoulder collisions). Peak linear acceleration, rotational acceleration and rotational velocity as well as maximum principal strain and von Mises stress were measured for each impact condition. The results demonstrated the tested ice hockey goaltender helmet was well designed to manage fall and puck impacts but does not consistently protect against shoulder collisions and an opportunity may exist to improve helmet designs to better protect goaltenders from shoulder collisions.  相似文献   

3.
No agreement on the choice of the failure criterion to adopt for the bone tissue can be found in the literature among the finite element studies aiming at predicting fracture risk of bones. The use of stress-based criteria seems to prevail on strain-based ones, while basic bone biomechanics suggest using strain parameters to describe failure. The aim of the present combined experimental-numerical study was to verify, using subject-specific finite element models able to accurately predict strains, if a strain-based failure criterion could identify the failure patterns of bones. Three cadaver femurs were CT-scanned and subsequently fractured in a clinically relevant single-stance loading scenario. Load-displacement curves and high-speed movies were acquired to define the failure load and the location of fracture onset, respectively. Subject-specific finite element models of the three femurs were built from CT data following a validated procedure. A maximum principal strain criterion was implemented in the finite element models, and two stress-based criteria selected for comparison. The failure loads measured were applied to the models, and the computed risks of fracture were compared to the results of the experimental tests. The proposed principal strain criterion managed to correctly identify the level of failure risk and the location of fracture onset in all the modelled specimens, while Von Mises or maximum principal stress criteria did not give significant information. A maximum principal strain criterion can thus be defined a suitable candidate for the in vivo risk factor assessment on long bones.  相似文献   

4.
We aimed to elucidate the mechanism of the retinal hemorrhage (RH) accompanied by shaken baby syndrome or abusive head trauma (SBS/AHT) by analyses using a computational model. We focused on a hypothesis that the vitreoretinal traction due to acceleration and deceleration caused by abusive shaking leads to retinal hemorrhage. A finite element (FE) mechanical model with simple spherical geometry was constructed. When the FE mechanical model was virtually shaken, the intensity of the stress applied to the retinal plane agreed well with the results from an analysis using a physical model made of agar gel. Impacts due to falling events induced more intensive tensile stresses, but with shorter duration, than the shake did. By applying a mathematical theory on tackiness, we propose a hypothesis that the time integration of the stress, in the unit of Pa·s, would be a good predictor of the RH accompanied by SBS/AHT. A single cycle of abusive shake amounted to 101 Pa·s of time integration of inflicted stress, while a single impact event amounted to 36 Pa·s. This would explain the paradoxical observation that shaking induces RH while RH due to impact events is only seen in a major event such as a fatal motor vehicle accident.  相似文献   

5.
Concussion has been linked to the presence of injurious strains in the brain tissues. Research investigating severe brain injury has reported that strains in the brain may be affected by two parameters: magnitude of the acceleration, and duration of that acceleration. However, little is known how this relationship changes in terms of creating risk for brain injury for magnitudes and durations of acceleration common in sporting environments. This has particular implications for the understanding and prevention of concussive risk of injury in sporting environments. The purpose of this research was to examine the interaction between linear and rotational acceleration and duration on maximum principal strain in the brain tissues for loading conditions incurred in sporting environments. Linear and rotational acceleration loading curves of magnitudes and durations similar to those from impact in sport were used as input to the University College Brain Trauma Model and maximum principal strain (MPS) was measured for the different curves. The results demonstrated that magnitude and duration do have an effect on the strain incurred by the brain tissue. As the duration of the acceleration increases, the magnitude required to achieve strains reflecting a high risk of concussion decreases, with rotational acceleration becoming the dominant contributor. The magnitude required to attain a magnitude of MPS representing risk of brain injury was found to be as low as 2500 rad/s2 for impacts of 10–15 ms; indicating that interventions to reduce the risk of concussion in sport must consider the duration of the event while reducing the magnitude of acceleration the head incurs.  相似文献   

6.
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues.  相似文献   

7.
Several stimuli are proposed in the bone remodeling theory. It is not clear, if a unique solution exists and if the result is convergent using a certain stimulus. In this study, the strain stimulus, strain energy stimulus and the von Mises stress stimulus for bone remodeling are compared and applied to a square plate model using the finite element method. In the plane stress state, the remodeling equilibrium equations are transformed into functions of only the principal strains and the graphs of these functions are drawn in a diagram using the principal strains as the variables of two coordinate axes. The equation of the sum of principal strain squared equal to a constant is a circle in the diagram. The remodeling equilibrium equation of the strain stimulus is a quadrangle fitting into the circle, the remodeling equilibrium equation of the strain energy stimulus is an ellipse and the remodeling equilibrium equation of the von Mises stress stimulus is also an ellipse close to the principal strains circle when we take the same constants in the above equations. Using the finite element method, two models are performed with the uniform initial elastic properties and with the semi-random initial distribution of the elastic properties. The principal strains as the final finite element results converge within 2% of the objective constant for all the different stimuli. The obtained Young's moduli of two models as the adaptation object are different but in equilibrium, i.e. the equilibrium solution of adaptation model is not unique. The principal strains can not be used to examine the uniqueness of solution, since two different solutions can have the same results of principal strains. Using a certain stimulus, certain initial properties and a certain iterative equation, the solution is unique in equilibrium. The results using the model in this study show also that the same results can be obtained using any of the three stimuli when a proper constant in each remodeling equilibrium equation is chosen.  相似文献   

8.
The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).  相似文献   

9.
10.
Y Feng  Z Ma 《PloS one》2012,7(7):e39340
BACKGROUND: Transscleral retinal photocoagulation with a diode laser is used in glaucoma refractory to medical and surgical treatment. Our main research question was how the technique performed in large vascular lesions associated with hemangiomas of the retina and choroid. METHODOLOGY/CLINICAL FINDINGS: Patient charts were retrieved from the hospital files for patients who underwent the procedure and were followed for at least 24 months. Five patients (6 eyes) fit the criteria. Cases included Von Hippel's disease (2 eyes), Coats' disease (1 eye) and choroidal hemangioma (3 cases). Transscleral diode laser treatment was performed under retrobulbar and topical anesthesia with a retinopexy probe (IRIS DioPexy, IRIS Medical Instruments, Mountain View, CA) applied transsclerally under indirect ophthalmoscope visualization. We found an improvement in best-corrected visual acuity at 24 months postoperatively. CONCLUSIONS/SIGNIFICANCE: Transscleral photocoagulation may have a clinical application in these diseases as an alternate to the high cost of photodynamic therapy with photosensitizing agents.  相似文献   

11.
A fungal infection in the right eye after retina detachment on an immunocompetent patient is reported. After surgery, she developed an infection that was empirically treated with antibiotics and corticoids. Later the patient developed another retina and choroid detachment. The infection evolved to endophthalmitis and a sample was sent to the microbiology laboratory, where Aspergillus fumigatus was isolated. In spite of treatment with intravenous and intravitreous amphotericin B, the eye was eventually removed by enucleation.  相似文献   

12.
Morphogenesis of the eye of Siberian sturgeon   总被引:1,自引:0,他引:1  
The most relevant changes in Acipenser baeri eye organization were detected between hatching and 5 days post hatch. At this age, the eye had an anterior chamber, lens, iris, choroid gland, scleral cartilage, cornea and a vitreous chamber lined by the retina (with two photoreceptors: rods and single cones).  相似文献   

13.
Substance P is known to exert potent effects in peripheral tissues, and is thought to be important for ocular function. The mechanism of action of substance P in the human eye is not known. As a basis for biochemical characterization specific binding of 125I-Bolton-Hunter-substance P was demonstrated in the human eye using autoradiographic methods. Biochemical characterization on slide-mounted tissue preparations showed that binding was saturable with a KD of 0.27 +/- 0.1 nmol/l. Specific binding occurred at comparable autoradiographic densities to both human retina and choroid. Substance P and its carboxyterminal fragment, substance P(3-11), were shown to be highly potent in binding competition experiments against 125I-Bolton-Hunter-substance P. Similar concentrations of substance P(1-9), neurokinin A and neurokinin B failed to significantly alter specific binding of 125I-Bolton-Hunter-substance P. The results indicate expression of high affinity substance P binding sites in human retina and choroid.  相似文献   

14.
15.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

16.

Background/Objectives

Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined.

Methodology

Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye.

Principal Findings

In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels.

Conclusions/Significance

Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of postnatal ocular growth in humans through the synthesis of atRA.  相似文献   

17.
Loss of fixation at the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. In this study, the fatigue damage response was determined for cement-bone constructs subjected to shear fatigue loading. A typical three-phase fatigue response was observed with substantial early damage, followed by a long constant damage rate region and a final abrupt increase in damage to fracture. All of the damage resulted from creep (permanent) deformation during fatigue loading and there was no loss in cyclic stiffness. Using a Von Mises equivalent stress/strain concept, a general damage model was developed to describe the fatigue creep response of the cement-bone interface under either shear or tensile fatigue loading. Time to failure was highly correlated (r2=0.971) with equivalent creep strain rate and moderately related (r2=0.428) with equivalent initial strain for the two loading regimes. The equivalent creep strain at failure (0.052+/-0.018) was found to be independent of the applied equivalent stress. A combination of the creep damage model (to describe the damage process) with a constant final equivalent strain (as a failure criteria) could be used to assess the cement-bone failure response of cemented implant systems.  相似文献   

18.
The purpose of this study was to compare the fracture resistance and fracture mode of single implant-zirconium coping combinations using zirconium and titanium abutments and to analyze the stress distribution pattern using three-dimensional finite elements analysis. Twenty implants with titanium and zirconium abutments were randomly divided into two groups (n = 10) and into resin blocks. Zirconium copings were cemented onto the abutments. The specimens were loaded with 135° angles to the long axis and the load values at the moment of failure were recorded using a universal test machine. Stress levels were calculated according to the maximum Von Mises criteria. The fracture resistances for titanium and zirconium abutment groups were 525.65 N and 514.05 N, respectively. No significant differences were observed between two groups regarding the fracture resistance levels. The maximum Von Mises equivalent stress concentrated on zirconium copings in both of the groups. Implant-abutment-ZrO2 coping combination has the potential to withstand physiological occlusal forces in the anterior region. Three-dimensional finite elements analysis results of the implant-abutment-ZrO2 coping combination is compatible with the results of fracture resistance.  相似文献   

19.
Physical model simulations of brain injury in the primate   总被引:20,自引:0,他引:20  
Diffuse brain injuries resulting from non-impact rotational acceleration are investigated with the aid of physical models of the skull-brain structure. These models provide a unique insight into the relationship between the kinematics of head motion and the associated deformation of the surrogate brain material. Human and baboon skulls filled with optically transparent surrogate brain tissue are subjected to lateral rotations like those shown to produce diffuse injury to the deep white matter in the brain of the baboon. High-speed cinematography captures the deformations of the grids embedded within the surrogate brain tissue during the applied load. The overall deformation pattern is compared to the pathological portrait of diffuse brain injury as determined from animal studies and autopsy reports. Shear strain and pathology spatial distributions mirror each other. Load levels and resulting surrogate brain tissue deformations are related from one species to the other. Increased primate brain mass magnified the strain amplified without significantly altering the spatial distribution. An empirically-derived value for a critical shear strain associated with the onset of severe diffuse axonal injury in primates is determined, assuming constitutive similarity between baboon and human brain tissue. The primate skull physical model data and the critical shear strain associated with the threshold for severe diffuse axonal injury were used to scale data obtained from previous studies to man, and thus derive a diffuse axonal injury tolerance for rotational acceleration for humans.  相似文献   

20.
Digital image-based finite element modeling (DIBFEM) has become a widely utilized approach for efficiently meshing complex biological structures such as trabecular bone. While DIBFEM can provide accurate predictions of apparent mechanical properties, its application to simulate local phenomena such as tissue failure or adaptation has been limited by high local solution errors at digital model boundaries. Furthermore, refinement of digital meshes does not necessarily reduce local maximum errors. The purpose of this study was to evaluate the potential to reduce local mean and maximum solution errors in digital meshes using a post-processing filtration method. The effectiveness of a three-dimensional, boundary-specific filtering algorithm was found to be mesh size dependent. Mean absolute and maximum errors were reduced for meshes with more than five elements through the diameter of a cantilever beam considered representative of a single trabecula. Furthermore, mesh refinement consistently decreased errors for filtered solutions but not necessarily for non-filtered solutions. Models with more than five elements through the beam diameter yielded absolute mean errors of less than 15% for both Von Mises stress and maximum principal strain. When applied to a high-resolution model of trabecular bone microstructure, boundary filtering produced a more continuous solution distribution and reduced the predicted maximum stress by 30%. Boundary-specific filtering provides a simple means of improving local solution accuracy while retaining the model generation and numerical storage efficiency of the DIBFEM technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号