首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The endothelial cells of the umbilical vessels are frequently used in mechanobiology experiments. They are known to respond to wall shear stress (WSS) of blood flow, which influences vascular growth and remodeling. The in vivo environment of umbilical vascular WSS, however, is not well characterized. In this study, we performed detailed characterization of the umbilical vascular WSS environments using clinical ultrasound scans combined with computational simulations. Doppler ultrasound scans of 28 normal human fetuses from 32nd to 33rd gestational weeks were investigated. Vascular cross-sectional areas were quantified through 3D reconstruction of the vascular geometry from 3D B-mode ultrasound images, and flow velocities were quantified through pulse wave Doppler. WSS in umbilical vein was computed with Poiseuille’s equation, whereas WSS in umbilical artery was obtained via computational fluid dynamics simulations of the helical arterial geometry. Results showed that blood flow velocity for umbilical artery and vein did not correlate with vascular sizes, suggesting that velocity had a very weak trend with or remained constant over vascular sizes. Average WSS for umbilical arteries and vein was 2.81 and 0.52 Pa, respectively. Umbilical vein WSS showed a significant negative correlation with the vessel diameter, but umbilical artery did not show any correlation. We hypothesize that this may be due to differential regulation of vascular sizes based on WSS sensing. Due to the helical geometry of umbilical arteries, bending of the umbilical cord did not significantly alter the vascular resistance or WSS, unlike that in the umbilical veins. We hypothesize that the helical shape of umbilical arteries may be an adaptation feature to render a higher constancy of WSS and flow in the arteries despite umbilical cord bending.  相似文献   

2.
There is a difference in the susceptibility to inflammation between the umbilical vein (UV) and the umbilical arteries (UAs). This led us to hypothesize that there is an intrinsic difference in the pro-inflammatory response between UA and UV. Real-time quantitative RT-PCR and microarray analysis revealed higher expression of interleukin (IL)-1β and IL-8 mRNA in the UV and differential expression of 567 genes between the UA and UV associated with distinct biological processes, including the immune response. Differential expression of human leukocyte antigen (HLA)-DRA mRNA between the UA and UV was due to unexpected HLA-DR+ cells migrating via the umbilical vessels into Wharton's jelly, more frequently in the UV. A significant proportion of these cells co-expressed CD45 and type I pro-collagen, and acquired CD163 or α-smooth muscle actin immunoreactivity in Wharton's jelly. Migrating cells were also found in the chorionic and stem villous vessels. Furthermore, the extent of migration increased with progression of gestation, but diminished in intrauterine growth restriction (IUGR). The observations herein strongly suggest that circulating foetal fibrocytes, routing via umbilical and placental vessels, are a reservoir for key cellular subsets in the placenta. This study reports fibrocytes in the human umbilical cord and placenta for the first time, and a novel role for both circulating foetal cells and the umbilical vessels in placental development, which is deranged in IUGR.  相似文献   

3.
OBJECTIVE: To investigate the development of the intra-abdominal part of the umbilical vessels in human fetuses by light microscopy. MATERIALS AND METHODS: The location of the umbilicus and umbilical vessels in the abdominal cavity of 90 human fetuses of gestational ages 10-40 weeks was determined. The external vessel diameter, lumen diameter, wall thickness, tunica adventitia thickness, tunica media thickness and the number of vasa vasorum were recorded from cross-sectlons of the intra-abdominal part of the umbilical vessels. 1985). 1985). RESULTS: Umbilical artery agenesis was observed on the left side in two cases and on the right in one case. There was a positive correlation between gestational age and umbilical vessel measurements. There were differences between the vessel and lumen diameters, tunica media thicknesses of the vessels of the second and third trimesters, and the full-term period. There were also predictable differences between the vessel and lumen diameters, tunica media and tunica adventitia thicknesses of the umbilical vein and umbilical arteries. CONCLUSION: Detailed information on quantitative parameters of umbilical vessels at each gestational age may prove helpful in determining pathologies of umbilical vessels and illuminating certain syndromes.  相似文献   

4.
Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.  相似文献   

5.
A successful pregnancy is dependent on liberal placental perfusion via the maternal and fetal circulations. Doppler waveform analyses of umbilical arteries suggest increased resistance to flow in the fetoplacental circulation of pregnancies complicated by intrauterine growth restriction (IUGR). Neither the site nor the mediators responsible for this altered vascular reactivity are known, to date. In placentas in normal pregnancy, reduced oxygenation promotes contraction of the in vitro-perfused placental cotyledon and modulates agonist-induced contraction of chorionic plate arteries and veins. Placental oxygenation has also been suggested to be reduced in IUGR. We tested the hypothesis that oxygen tension could directly modify placental chorionic plate vessel vasoreactivity in IUGR. Small arteries and veins from the chorionic plate were dissected from biopsies from placentas of pregnancies complicated by IUGR and were studied using parallel wire myography. Vasoconstriction at 20%, 7%, and 2% oxygen was assessed utilizing the thromboxane mimetic U46619. Experiments were also performed in the presence of 4-aminopyridine (4AP), a blocker of voltage-gated potassium channels. Increased oxygenation reduced venous vasoconstriction but did not modify arterial vasoconstriction. 4AP increased basal tone in arteries and veins. We suggest that venoconstriction in response to hypoxia may provide a mechanism for increased fetoplacental vascular resistance associated with IUGR.  相似文献   

6.
Hemodynamics plays an important role in cardiovascular physiology and pathology. Pulsatile flow (Q), pressure (P), and diameter (D) waveforms exert wall shear stress (WSS), normal stress, and circumferential strain (CS) on blood vessels. Most in vitro studies to date have focused on either WSS or CS but not their interaction. Recently, we have shown that concomitant WSS and CS affect EC biochemical response modulated by the temporal phase angle between WSS and CS (stress phase angle, SPA). Large negative SPA has been shown to occur in regions of the circulation where atherosclerosis and intimal hyperplasia are prevalent. Here, we report that nitric oxide (NO) biochemical secretion was significantly decreased in response to a large negative SPA of -180 deg with respect to an SPA of 0 degrees in bovine aortic endothelial cells (BAEC) at 5 h. A new hemodynamic simulator for the study of the physiologic SPA was used to provide the hemodynamic conditions of pro-atherogenic (SPA = -180 deg) and normopathic (SPA = 0 deg) states. The role of complex hemodynamics in vascular remodeling, homeostasis, and pathogenesis can be advanced by further assessment of the hypothesis that a large negative SPA is pro-atherogenic.  相似文献   

7.

Objective

To determine if bilateral absent or reverse end-diastolic (ARED) flow in the two umbilical arteries (UAs) at the perivesical (PVC) segment represents a more severe degree of hemodynamic compromise than unilateral ARED flow at the PVC segment in singleton pregnancies complicated by intrauterine growth restriction (IUGR).

Methods

This was a prospective observational study. One hundred nine fetuses with IUGR underwent a total of 225 ultrasound (US) examinations. We measured the pulsatility index (PI) from the two UAs at the PVC segment, UA in the free floating cord (FFC), middle cerebral artery (MCA), ductus venosus (DV) and the aortic isthmus blood flow index (IFI). Three groups were classified according to bilateral positive end-diastolic (PED) flow, unilateral ARED flow or bilateral ARED flow in the UAs at the PVC segment.

Results

The proportions of US examinations with PED flow, unilateral ARED flow and bilateral ARED flow in the UAs were 54.7%, 20.4%, and 24.9%, respectively. At the last US examination, the IFI z-scores were significantly lower in the bilateral ARED group (-6.28±4.30) compared to the unilateral ARED group (-1.72±3.18, p<0.05) and the bilateral PED group (-0.83±2.36, p<0.05), the DV-PI z-scores were significantly higher in the bilateral ARED group (2.15±3.79) compared to the bilateral PED group (0.64±1.50, p<0.05). Before 32 weeks of gestation, the interval between US examination and delivery was significantly shorter in the bilateral ARED group (8.9 days ±8.2) than the unilateral ARED group (15.9 days ±13.4, p<0.05) and the bilateral PED group (30.3 days±25.7, p<0.05).

Conclusion

There are significant differences in fetal blood fluxes between left and right UA. Doppler examination at the PVC segment significantly improves the comparability of UA-PI between two successive US examinations and allows a longitudinal and independent hemodynamic investigation of each UA. Examination of a single UA in free floating cord may miss a large fraction of unilateral ARED flow. In singleton IUGR fetuses, a bilateral ARED flow in the UAs at the PVC segment indicates more severe hemodynamic compromise and worse fetal conditions than unilateral ARED flow.  相似文献   

8.
The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that stent geometry may cause local alterations in wall shear stress (WSS) that have been associated with neointimal hyperplasia and subsequent restenosis. However, previous CFD studies have ignored histological evidence of vascular straightening between circumferential stent struts. We tested the hypothesis that consideration of stent-induced vascular deformation may more accurately predict alterations in indexes of WSS that may subsequently account for histological findings after stenting. We further tested the hypothesis that the severity of these alterations in WSS varies with the degree of vascular deformation after implantation. Steady-state and time-dependent simulations of three-dimensional CFD arteries based on canine coronary artery measurements of diameter and blood flow were conducted, and WSS and WSS gradients were calculated. Circumferential straightening introduced areas of high WSS between stent struts that were absent in stented vessels of circular cross section. The area of vessel exposed to low WSS was dependent on the degree of circumferential vascular deformation and axial location within the stent. Stents with four vs. eight struts increased the intrastrut area of low WSS in vessels, regardless of cross-sectional geometry. Elevated WSS gradients were also observed between struts in vessels with polygonal cross sections. The results obtained using three-dimensional CFD models suggest that changes in vascular geometry after stent implantation are important determinants of WSS distributions that may be associated with subsequent neointimal hyperplasia.  相似文献   

9.
The reduction in infant birth weight and increased frequency of preeclampsia (PE) in high-altitude residents have been attributed to greater placental hypoxia, smaller uterine artery (UA) diameter, and lower UA blood flow (Q(UA)). This cross-sectional case-control study determined UA, common iliac (CI), and external iliac (EI) arterial blood flow in Andeans residing at 3,600-4,100 m, who were either nonpregnant (NP, n = 23), or experiencing normotensive pregnancies (NORM; n = 155), preeclampsia (PE, n = 20), or gestational hypertension (GH, n = 12). Pregnancy enlarged UA diameter to ~0.62 cm in all groups, but indices of end-arteriolar vascular resistance were higher in PE or GH than in NORM. Q(UA) was lower in early-onset (≤34 wk) PE or GH than in NORM, but was normal in late-onset (>34 wk) illness. Left Q(UA) was consistently greater than right in NORM, but the pattern reversed in PE. Although Q(CI) and Q(EI) were higher in PE and GH than NORM, the fraction of Q(CI) distributed to the UA was reduced 2- to 3-fold. Women with early-onset PE delivered preterm, and 43% had stillborn small for gestational age (SGA) babies. Those with GH and late-onset PE delivered at term but had higher frequencies of SGA babies (GH=50%, PE=46% vs. NORM=15%, both P < 0.01). Birth weight was strongly associated with reduced Q(UA) (R(2) = 0.80, P < 0.01), as were disease severity and adverse fetal outcomes. We concluded that high end-arteriolar resistance, not smaller UA diameter, limited Q(UA) and restricted fetal growth in PE and GH. These are, to our knowledge, the first quantitative measurements of Q(UA) and pelvic blood flow in early- vs. late-onset PE in high-altitude residents.  相似文献   

10.
Fetuses of 24 women with normal pregnancies and 14 women with fetal intrauterine growth retardation (IUGR) were tested for shape and movement of the inner borders of the left ventricle (LV) by means of echocardiography. The LV contour was divided into 12 segments. The coefficient of variation (CV) of the movements of individual wall segments was calculated to assess regional nonuniformity of contractions of the LV wall. The ratio between the long and short LV axes was lower in the IUGR group (1.12 ± 0.12) than in the control group (1.75 ± 0.16). Nonuniformity of contractions was higher in the IUGR group (CV = 37.8 ± 17.6%) than in the control group (CV = 21.1 ± 9.9%, P < 0.01). The ratio of the early wave to the atrial wave of transmitral flow (E/A ratio) was lower in the IUGR group (0.69 ± 0.08) than in the control group (0.80 ± 0.08). A negative correlation between the CV and the global ejection fraction of the LV was observed in the fetuses of both groups. In addition, a negative correlation was demonstrated for the E/A ratio and the systolic-to-diastolic flow ratio (S/D ratio) in the umbilical artery. Changes in the shape, nonuniformity of contractions, and diastolic function of the heart in IUGR fetuses are considered to be an adaptation to increased afterload as a result of an elevated resistance of placental vessels.  相似文献   

11.
The objective of this study was to identify abnormal vascular coiling of the umbilical cord in neonates of mothers with gestational diabetes mellitus. The umbilical cords of 57 neonates of gestational diabetic mothers were examined and the coiling index determined by dividing the total number of complete vascular coils by the length of the cord in centimeters. Obstetric history, delivery data and neonatal outcome were also evaluated. These variables were compared with those obtained for 389 normal pregnancies. The frequency distribution of umbilical coiling index in the control population and gestational diabetic mothers were normal (10th and 90th percentiles = 0.17 and 0.37; mean +/- SD = 0.26 +/- 0.09 and 0.24 +/- 0.12 coils/cm, respectively). Non-coiling and hyper-coiling were significantly more frequent with diabetic than with normal pregnancy (p = 0.004; p = 0.008, respectively). Both abnormalities of umbilical vascular coiling were also significantly associated with adverse perinatal outcome (p = 0.04) and emergency cesarean delivery (p < 0.0001) in the diabetic and control (p = 0.03; p < 0.0001, respectively) groups. Neonates of gestational diabetic mothers are therefore more likely to have hyper-coiled or non-coiled umbilical blood vessels. Perinatal morbidity and emergency cesarean delivery are increased in this subgroup.  相似文献   

12.
Cerebral vasospasm (CVS) is the most common serious complication of subarachnoid hemorrhage. Among the many factors that are associated with the pathogenesis of CVS, hemodynamics plays an important role in the initiation and development of CVS. Numerical simulation was carried out to obtain the flow patterns and wall shear stress (WSS) distribution in spastic middle cerebral arteries. The blood was assumed to be incompressible, laminar, homogenous, Newtonian, and steady. Our simulations reveal that flow velocity and WSS level increase at the stenosis segment of the spastic vessels, but further downstream of stenosis, the WSS significantly decreases along the inner wall, and flow circulation and stagnation are observed. The hydrodynamic resistance increases with the increase of vessel spasm. Moreover, the change of flow field and hydrodynamic forces are not linearly proportional to the spasm level, and the rapid change of hemodynamic parameters is observed as the spasm is more than 50%. Accordingly, in the view of hemodynamic physiology, vessels with less than 30% stenosis are capable of self-restoration towards normal conditions. However, vessels with more than 50% stenosis may eventually lose their capacity to adapt to differing physiologic conditions due to the extreme non-physilogic hemodynamic environment, and the immediate expansion of the vessel lumen might be needed to minimize serious and non-reversible effects.  相似文献   

13.
Twenty fetal lambs were studied in utero using continuous wave Doppler ultrasound to analyse the fetal umbilical artery flow velocity waveforms. Satisfactory waveforms were obtained. Prepregnancy surgical removal of uterine caruncles was used to produce intrauterine fetal growth retardation in 14 of these ovine pregnancies of whom 8 delivered a small for gestational age fetus. In only one fetus was the umbilical artery flow velocity waveform abnormal with a high systolic diastolic ratio. We conclude that the growth restriction occurring in the ovine fetus following a reduction of placental implantation sites is not related to a restriction in the fetoplacental circulation and this is different from the most frequently observed human fetal growth retardation.  相似文献   

14.
We combined two ultrasound techniques to develop a safe, non-invasive, transcutaneous method of observing the circulation in the umbilical arteries and vein in the fetus. The umbilical cord can be located by standard echo ultrasound procedures, and this information can be used to direct a Doppler ultrasound beam on to the vessels in the cord. The signals can be heard through audio headphones or recorded on a tape recorded and spectrum-analysed. The method was successful in each of 20 patients examined, whose pregnancies ranged from 12 to 40 weeks'' gestational age, and was suitable for outpatient use. It should be useful in assessing such conditions as pre-eclampsia and intrauterine growth retardation.  相似文献   

15.

Introduction

Some types of antenatal maternal psychological distress may be associated with reduced fetal growth and birthweight. A stress-mediated reduction in placental blood flow has been suggested as a mechanism. Previous studies have examined this using ultrasound-derived arterial resistance measures in the uterine (UtA) and umbilical (UA) arteries, with mixed conclusions. However, a reduction in placental volume blood flow may occur before changes in arterial resistance measures are seen. Fetoplacental volume blood flow can be quantified non-invasively in the umbilical vein (UV). Our objective was to study whether specific types of maternal psychological distress affect the placental circulation, using volume blood flow quantification in addition to arterial resistance measures.

Methods

This was a prospective observational study of 104 non-smoking pregnant women (gestational age 30 weeks) with uncomplicated obstetric histories. Psychological distress was measured by General Health Questionnaire-28 (subscales anxiety and depression) and Impact of Event Scale-22 (subscales intrusion, avoidance and arousal). UtA and UA resistance measures and UV volume blood flow normalized for fetal abdominal circumference, were obtained by Doppler ultrasound.

Results

IES intrusion scores above the mean were associated with a reduction in normalized UV volume blood flow (corresponding to –0.61 SD; P = 0.003). Adjusting for UA resistance increased the strength of this association (difference –0.66 SD; P<0.001). Other distress types were not associated with UV volume blood flow. Maternal distress was not associated with arterial resistance measures, despite adjustment for confounders.

Conclusions

Intrusive thoughts and emotional distress regarding the fetus were associated with reduced fetoplacental volume blood flow in third trimester. Uterine and umbilical artery resistance measures were not associated with maternal distress. Our findings support a decrease in fetoplacental blood flow as a possible pathway between maternal distress and reduced fetal growth.  相似文献   

16.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

17.
We hypothesized that umbilical artery (UA) absolute blood flow velocities measured by Doppler ultrasonography reflect placental volume blood flow (Q(UA)) and placental vascular resistance (R(UA)) in a late gestation fetal sheep model. In addition, we examined the relationships between umbilical artery absolute blood flow velocities and parameters of fetal cardiac function. Twenty-six sheep fetuses were instrumented at 112-132 days of gestation. After a 5-day recovery period, experiments were performed under general anesthesia in 16 normal fetuses, in 5 fetuses after maternal administration of phenylephrine, and in 5 fetuses after placental embolization. The Q(UA) and arterial blood pressures were measured using a transit-time ultrasonic flow probe and a catheter placed into the descending aorta, respectively. UA peak systolic velocity (PSV), end-diastolic velocity (EDV), time-averaged maximum velocity (TAMXV), pulsatility index (PI), mean velocity (V(mean)), fetal cardiac output, ventricular ejection forces, and the proportion of isovolumetric relaxation time (IRT%) in the cardiac cycle were measured with the use of Doppler ultrasonography. Significant positive linear correlations were found between UA EDV, TAMXV, and V(mean) versus Q(UA), whereas UA PI had a significant negative correlation with Q(UA). Significant negative correlations were shown between UA EDV, TAMXV, and V(mean) versus R(UA). A significant positive correlation was present between UA PI and R(UA). Doppler-derived UA parameters did not correlate with fetal arterial blood pressures, cardiac output, ventricular ejection forces or IRT%. In fetal sheep, Doppler-derived UA PI and absolute velocities, except PSV, are closely related to directly measured Q(UA) and R(UA), validating the use of noninvasive Doppler velocimetry in the assessment of placental circulation.  相似文献   

18.
In order to study the possible role of nitric oxide (NO) in the human placenta, we measured the concentration of its stable metabolite nitrite (NO2-) in the placentas of women with normal pregnancies and those from pregnancies complicated by intrauterine growth restriction (IUGR) with or without fetal hypoxia. We have measured nitrites by the Griess reaction in 15 placentas from IUGR pregnancies and 12 controls. Cerebroumbilical ratio (C:U) was recorded by color Doppler ultrasound and values below 1 were considered to be a predictor for fetal hypoxia. NO2- levels measured in pathological placentas were increased for at least 93% as compared to control. Subjects from pregnancies complicated by IUGR and fetal hypoxia had increased NO2- as compared to the placentas from pregnancies with IUGR and normal fetal oxygenation. NO production in placenta is increased in pregnancies with IUGR. This effect is more pronounced in those with compromised fetal oxygenation.  相似文献   

19.
The goals of this study were to determine the time course and spatial dependence of structural diameter changes in the mouse gracilis artery after a redistribution of blood flow and to compare the observations with predictions of computational models for structural adaptation. Diameters were measured 1, 2, 7, 14, 21, 28, and 56 days after resection of one of the two blood supplies to the artery. Overall average diameter, normalized with respect to diameters in untreated vessels, increased slightly during the first 7 days, then increased more rapidly, reaching a peak around day 21, and then decreased. This transient increase in diameter was spatially nonuniform, being largest toward the point of resection. A previously developed theoretical model, in which diameter varies in response to stimuli derived from local metabolic and hemodynamic conditions, was extended to include effects of time-delayed remodeling stimuli in regions of reduced perfusion. Predictions of this model were consistent with observed diameter changes, including the transient increase in diameters near the point of resection, when a remodeling stimulus with a time delay of approximately 7 days was included. The results suggest that delayed stimuli significantly influence the dynamic characteristics of vascular remodeling resulting from reduced blood supply.  相似文献   

20.
Arterio-venous grafts (AVGs), the second best option as long-term vascular access for hemodialysis, face major issues of stenosis mainly due to development of intimal hyperplasia at the venous anastomosis which is linked to unfavorable hemodynamic conditions. We have investigated computationally the utility of a coupled sequential venous anastomotic design to replace conventional end-to-side (ETS) venous anastomosis, in order to improve the hemodynamic environment and consequently enhance the patency of AVGs. Two complete vascular access models with the conventional and the proposed venous anastomosis configurations were constructed. Three-dimensional, pulsatile blood flow through the models was simulated, and wall shear stress (WSS)-based hemodynamic parameters were calculated and compared between the two models. Simulation results demonstrated that the proposed anastomotic design provides: (i) a more uniform and smooth flow at the ETS anastomosis, without flow impingement and stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis; (ii) more uniform distribution of WSS and substantially lower WSS gradients on the venous wall; and (iii) a spare route for the blood flow to the vein, to avoid re-operation in case of stenosis. The distinctive hemodynamic advantages observed in the proposed anastomotic design can enhance the patency of AVGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号