首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of post-ingestion and physical conditions under which killed mosquitoes are stored on the success of detecting blood meal DNA of Anopheles stephensi and Culex quinquefasiatus were investigated by polymerase chain reaction (PCR) amplification at the human mitochondrial DNA cytochrome b (cytB) gene. Host DNA extracted from the blood meal up to 33 h post-ingestion in both species acts as an efficient template for PCR amplification. However, more DNA concentration is needed for meals digested for a longer time, and successful PCR amplification from meals digested for 36 h,dropped to a faint band. There were no differences between PCR success rate for samples stored at +4 or -20 degrees C, but less successful products were observed in samples kept at 4 degrees C for the periods longer than 30 h digestion. The results of this study are important for conducting malaria epidemiological studies that provide information about the degree of contact between human hosts and mosquito vectors, impact of vector controls such as bed nets and repellents, and the transmission dynamics of human malaria and other vector-borne diseases.  相似文献   

2.
Mosquito‐borne infectious diseases are emerging in many regions of the world. Consequently, surveillance of mosquitoes and concomitant infectious agents is of great importance for prediction and prevention of mosquito‐borne infectious diseases. Currently, morphological identification of mosquitoes is the traditional procedure. However, sequencing of specified genes or standard genomic regions, DNA barcoding, has recently been suggested as a global standard for identification and classification of many different species. Our aim was to develop a genetic method to identify mosquitoes and to study their relationship. Mosquitoes were captured at collection sites in northern Sweden and identified morphologically before the cytochrome c oxidase subunit I (COI) gene sequences of 14 of the most common mosquito species were determined. The sequences obtained were then used for phylogenetic placement, for validation and benchmarking of phenetic classifications and finally to develop a hierarchical PCR‐based typing scheme based on single nucleotide polymorphism sites (SNPs) to enable rapid genetic identification, circumventing the need for morphological characterization. The results showed that exact phylogenetic relationships between mosquito taxa were preserved at shorter evolutionary distances, but at deeper levels, they could not be inferred with confidence using COI gene sequence data alone. Fourteen of the most common mosquito species in Sweden were identified by the SNP/PCR‐based typing scheme, demonstrating that genetic typing using SNPs of the COI gene is a useful method for identification of mosquitoes with potential for worldwide application.  相似文献   

3.
Rasgon JL 《PloS one》2008,3(5):e2198

Background

Vertebrate bloodfeeding is a critical component of a mosquito''s ability to transmit pathogens that cause diseases such as malaria, dengue fever and viral encephalitis. Due to degradation by the digestive process, current methods to identify mosquito bloodmeal sources are only useful for approximately 36 hours post-feeding. A critical need exists for technologies to extend this window and gain a more complete picture of mosquito feeding behavior for epidemiological studies. Stable isotopes are useful for investigating organism feeding behavior because the isotopic ratio of an organism''s tissues reflects that of the material it ingests.

Methodology/Principal Findings

Proof-of-principle data indicates that after bloodfeeding, Aedes albopictus mosquitoes acquire diagnostic Carbon and Nitrogen stable isotope profiles from their vertebrate hosts that can be accurately identified one week post-feeding, approximately 4 days after the entire bloodmeal has been digested. Total C/N ratio served as a biomarker marker for bloodfeeding (P<0.02), while δN was the most informative variable which could distinguish between unfed, chicken-fed and human-fed mosquitoes (P<0.01). By plotting C/N vs. δN, all feeding treatments could be identified in a double-blind analysis.

Conclusions/Significance

These proof-of-principle experiments indicate that analysis of stable isotopes can be used to distinguish bloodfed from unfed mosquitoes, and also distinguish between different vertebrate bloodmeal sources even after all blood has been digested. The development of stable isotope-based assays for mosquito bloodmeal identification may be a powerful tool to investigate mosquito feeding ecology and the dynamics of vector-borne pathogens.  相似文献   

4.
Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology.  相似文献   

5.
Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes.  相似文献   

6.
The Southern house mosquito Culex quinquefasciatus relies on its olfactory system to locate the human hosts for blood meals,by which several deadly diseases are transmitted.Olfactory sensory neurons(OSNs)housed in the sensilla on the olfactory appendages send their axons into the antennal lobes(ALs),the primary olfactory center in the brain,where the OSNs expressing the same olfactory receptors converge upon the same spherical structures known as glomeruli in the AL.The structure of the antennal lobe,that is,the spatial organization of the glomeruli,governs the insect's odor identification and discrimination.Drosophila studies have demonstrated the specific connections between receptors and glomeruli based on the 3D structure of the antennal lobe,deepening our understanding of the relationships between glomerular activities and behaviors,but as yet the structure of the Cx.quinquefasciatus antennal lobe remains unknown.We therefore constructed a 3D model of the Cx.quinquefasciatus antennal lobe using nc82 antibody staining,identifying 62 and 44 glomeruli in the female and male mosquito antennal lobe,respectively,with a significant sexual dimorphism in terms of the antennal lobe volume and glomerulus number.These results demonstrate the structural basis of mosquito odor coding and provide a platform for future studies of the mosquito olfactory signal processing mechanism.  相似文献   

7.
Vector-borne diseases often originate from wildlife and can spill over into the human population. One of the most important determinants of vector-borne disease transmission is the host preference of mosquitoes. Mosquitoes with a specialised host preference are guided by body odours to find their hosts in addition to carbon dioxide. Little is known about the role of mosquito host preference in the spillover of pathogenic agents from humans towards animals and vice versa. In the Republic of Congo, the attraction of mosquitoes to primate host odours was determined, as well as their possible role as malaria vectors, using odour-baited traps mimicking the potential hosts of mosquitoes. Most of the mosquito species caught showed a generalistic host preference. Anopheles obscurus was the most abundant Anopheles mosquito, with a generalistic host preference observed from the olfactory response and the detection of various Plasmodium parasites. Interestingly, Culex decens showed a much higher attraction towards chimpanzee odours than to human or cow odours. Human Plasmodium parasites were observed in both human and chimpanzee blood, although not in the Anopheles mosquitoes that were collected. Understanding the role of mosquito host preference for cross-species parasite transmission provides information that will help to determine the risk of spillover of vector-borne diseases.  相似文献   

8.
A general method for obtaining species-specific repetitive DNA sequences is described. The method is based on the detection of recombinant DNA clones containing repetitive sequences using labeled total genomic DNA. These repetitive DNA sequences can be used to identify individual mosquito adults, pupae, and larvae squashed on filter membranes (squash blots). This technique was used to distinguish individuals of the four sibling species of the Anopheles quadrimaculatus complex. Repetitive DNA sequences and squash blots can be of use for rapid identification of other insect species in field collections.  相似文献   

9.
The cellular fatty acid (CFA) composition of the cytoplasmic membrane of a bacillus isolated from a human lung and deposited in the National Collection of Type Cultures as Bacillus sphaericus NCTC 11025 was determined by gas-liquid chromatography. The CFA composition of B. sphaericus 2362, isolated from a microbial larvicide, and those of B. sphaericus reference strains obtained from public collections were also determined. Samples were grouped by hierarchical cluster analysis based on the unpaired-group method using arithmetic averages. Samples that linked at a Euclidean distance of < or = 2.0 U were considered to belong to the same strain. NCTC 11025 and the type strain of B. sphaericus, ATCC 14577, were mixed; all other isolates were monotypic. The predominant fatty acid in NCTC 11025 was 12-methyltetradecanoic acid, while the predominant fatty acid in the remaining isolates was 13-methyltetradecanoic acid. NCTC 11025 linked to the other isolates at a Euclidean distance of 83.8 U, and we concluded that it belongs to a different species that we could not identify. We could distinguish among six DNA homology groups of B. sphaericus by using fatty acids. Within DNA homology group IIA, strain 2362 could be distinguished from other strains belonging to serotype H5a, 5b. We concluded that CFA analysis is a useful technique to determine if future human isolates identified as B. sphaericus in fact belong to other species of bacteria or whether the isolates originated from commercial products.  相似文献   

10.
Fifty fresh isolates of Trypanosoma cruzi from Triatoma dimidiata vectors and 31 from patients with Chagas disease were analysed for DNA polymorphisms within the 432-bp core region of the cruzipain gene which encodes the active site of cathepsin L-like cystein proteinase. The cruzipain gene showed signs of polymorphism consisting of four different DNA sequences in Central and South American isolates of T. cruzi. The PCR fragments of Guatemalan isolates could be divided into three groups, Groups 1, 2 and 3, based on different patterns of single-stranded DNA conformation polymorphism. All of the strains isolated from Brazil, Chile, and Paraguay, except for the CL strain, showed a Group 4 pattern. Two to four isolates from each group were analysed by cloning and sequencing. A silent mutation occurred between Groups 1 and 2, and five nucleotides and two aa substitutions were detected between Groups 1 and 3. The DNA sequence of Group 4 contained five nucleotides and one aa substitution from Group 1. All of the DNA sequences corresponded well with the single-stranded DNA conformation polymorphism. The Group 1 isolates, the majority in the Guatemalan population (70/81, 86.4%), were isolated from both triatomines and humans, but Group 3 were isolated only from humans. Moreover, the Group 2 isolates were detected only in triatomine vectors (9/50; 18%), but never in humans (0/32, P<0.05) suggesting that this group has an independent life-cycle in sylvatic animals and is maintained by reservoir hosts other than humans.  相似文献   

11.
Mosquito dispersal is a key behavioural factor that affects the persistence and resurgence of several vector-borne diseases. Spatial heterogeneity of mosquito resources, such as hosts and breeding sites, affects mosquito dispersal behaviour and consequently affects mosquito population structures, human exposure to vectors, and the ability to control disease transmission. In this paper, we develop and simulate a discrete-space continuous-time mathematical model to investigate the impact of dispersal and heterogeneous distribution of resources on the distribution and dynamics of mosquito populations. We build an ordinary differential equation model of the mosquito life cycle and replicate it across a hexagonal grid (multi-patch system) that represents two-dimensional space. We use the model to estimate mosquito dispersal distances and to evaluate the effect of spatial repellents as a vector control strategy. We find evidence of association between heterogeneity, dispersal, spatial distribution of resources, and mosquito population dynamics. Random distribution of repellents reduces the distance moved by mosquitoes, offering a promising strategy for disease control.  相似文献   

12.
Random amplified polymorphic DNA (RAPD) markers were used to examine population genetic structure in populations of native grape phylloxera. This research asked: (i) do RAPD markers distinguish two groups corresponding to the two host plant species; and (ii) do RAPD markers distinguish groups according to spatial location, independent of host plant association? Forty‐nine phylloxera clones were collected from five pairs of adjacent individuals of two sympatric grape species in five sites along a 145 km transect in Missouri, USA. A high level of polymorphism was observed, with some evidence for structuring between host plant species and no evidence for spatial structuring. An analysis of molecular variance (amova ) found that 6.52% of the variance in RAPD banding patterns was attributable to host species and 7.96% of the variance was attributable to spatial location. A cluster analysis did not result in two groups corresponding to the two hosts, or to five groups corresponding to the geographical sites sampled. A Mantel test showed a low correlation between genetic similarity and spatial location. Two of the 93 RAPD markers were nonrandomly associated between the hosts. It is suggested that there may be a small host‐mediated effect on genetic variation but stochastic dispersal and a highly heterogeneous environment may be the primary influences on the observed polymorphism.  相似文献   

13.
The Anopheles dirus complex of mosquitoes contains some of the most important vectors of malaria in Southeast Asia. To distinguish five species of the complex that occur in Thailand, a method using the polymerase chain reaction (PCR) was developed. The method utilizes allele-specific amplification to detect fixed differences between the species in the DNA sequence of the ribosomal DNA internal transcribed spacer 2. Primers were designed to amplify fragments of diagnostic length from the DNA of the different species. The method was tested on 179 mosquitoes of the An. dirus complex from many parts of Thailand and shown to be effective. Every specimen was unambiguously identified as species A, B, C, D or F (i.e. An. dirus s.s. species B, C, D or An. nemophilous, respectively) by the PCR method, with confirmation of 58/61 identifications from polytene chromosome characteristics. For the other three specimens (3/44 from Kanchanaburi 5 locality), there was disagreement between the PCR and chromosomal methods of species identification (probably due to errors in the chromosomal identifications). Primers can be combined in a single PCR reaction providing a rapid, sensitive and straightforward method of species identification. Only small quantities of DNA are required, leaving most of the mosquito to be used for other analyses.  相似文献   

14.
Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.  相似文献   

15.

Background

Mosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles.

Methodology and principal findings

We used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces.

Conclusion and significance

High multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control.  相似文献   

16.
Emerging infectious diseases represent a challenge for global economies and public health. About one fourth of the last pandemics have been originated by the spread of vector-borne pathogens. In this sense, the advent of modern molecular techniques has enhanced our capabilities to understand vector-host interactions and disease ecology. However, host identification protocols have poorly profited of international DNA barcoding initiatives and/or have focused exclusively on a limited array of vector species. Therefore, ascertaining the potential afforded by DNA barcoding tools in other vector-host systems of human and veterinary importance would represent a major advance in tracking pathogen life cycles and hosts. Here, we show the applicability of a novel and efficient molecular method for the identification of the vertebrate host''s DNA contained in the midgut of blood-feeding arthropods. To this end, we designed a eukaryote-universal forward primer and a vertebrate-specific reverse primer to selectively amplify 758 base pairs (bp) of the vertebrate mitochondrial Cytochrome c Oxidase Subunit I (COI) gene. Our method was validated using both extensive sequence surveys from the public domain and Polymerase Chain Reaction (PCR) experiments carried out over specimens from different Classes of vertebrates (Mammalia, Aves, Reptilia and Amphibia) and invertebrate ectoparasites (Arachnida and Insecta). The analysis of mosquito, culicoid, phlebotomie, sucking bugs, and tick bloodmeals revealed up to 40 vertebrate hosts, including 23 avian, 16 mammalian and one reptilian species. Importantly, the inspection and analysis of direct sequencing electropherograms also assisted the resolving of mixed bloodmeals. We therefore provide a universal and high-throughput diagnostic tool for the study of the ecology of haematophagous invertebrates in relation to their vertebrate hosts. Such information is crucial to support the efficient management of initiatives aimed at reducing epidemiologic risks of arthropod vector-borne pathogens, a priority for public health.  相似文献   

17.
疟疾、登革热等重大传染性蚊媒疾病严重危害人类健康,且目前缺乏有效的药物和疫苗,防治埃及伊蚊、冈比亚按蚊等媒介昆虫是控制和消除这些疾病的有效手段。化学杀虫剂的大规模使用在一定程度上控制了疾病的传播,但其抗药性和环境污染等问题也随之而来。分子生物学的飞速发展为昆虫不育技术(SIT)的更新及害虫防治提供了新的策略,由此发展起来的以释放携带显性致死基因昆虫(RIDL)为代表的一系列遗传不育技术为蚊虫种群防控提供了更加有效的选择。本文概述了遗传技术在蚊虫防控中的应用进展,包括蚊虫遗传防治的历史和策略,阐述了RIDL技术体系的原理,同时介绍了相关遗传控制品系和已经开展的田间释放研究,展示了遗传修饰不育技术在蚊媒疾病防治中的巨大潜力。  相似文献   

18.
The emergence of several high profile infectious diseases in recent years has focused attention on our need to understand the ecological factors contributing to the spread of infectious diseases. West Nile virus (WNV) is a mosquito-borne zoonotic disease that was first detected in the United States in 1999. The factors accounting for variation in the prevalence of WNV are poorly understood, but recentideas suggesting links between high biodiversity and reduced vector-borne disease risk may help account for distribution patterns of this disease. Since wild birds are the primary reservoir hosts for WNV, we tested associations between passerine (Passeriform) bird diversity, non-passerine (all other orders) bird diversity and virus infection rates in mosquitoes and humans to examine the extent to which bird diversity is associated with WNV infection risk. We found t h at non-passerine species richness (number of non-passerine species) was significantly negatively correlated with both mosquito and human infection rates, whereas there was no significant association between passerine species richness and any measure of infection risk. Our findings suggest that non-passerine diversity may play a role in dampening WNV amplification rates in mosquitoes, minimizing human disease risk.  相似文献   

19.
Fifty fresh isolates of Trypanosoma cruzi from Triatoma dimidiata vectors and 31 from patients with Chagas disease were analysed for DNA polymorphisms within the 432-bp core region of the cruzipain gene which encodes the active site of cathepsin L-like cystein proteinase. The cruzipain gene showed signs of polymorphism consisting of four different DNA sequences in Central and South American isolates of T. cruzi. The PCR fragments of Guatemalan isolates could be divided into three groups, Groups 1, 2 and 3, based on different patterns of single-stranded DNA conformation polymorphism. All of the strains isolated from Brazil, Chile, and Paraguay, except for the CL strain, showed a Group 4 pattern. Two to four isolates from each group were analysed by cloning and sequencing. A silent mutation occurred between Groups 1 and 2, and five nucleotides and two aa substitutions were detected between Groups 1 and 3. The DNA sequence of Group 4 contained five nucleotides and one aa substitution from Group 1. All of the DNA sequences corresponded well with the single-stranded DNA conformation polymorphism. The Group 1 isolates, the majority in the Guatemalan population (70/81, 86.4%), were isolated from both triatomines and humans, but Group 3 were isolated only from humans. Moreover, the Group 2 isolates were detected only in triatomine vectors (9/50; 18%), but never in humans (0/32, P<0.05) suggesting that this group has an independent life-cycle in sylvatic animals and is maintained by reservoir hosts other than humans.  相似文献   

20.
Twenty nine isolates of Fusarium spp. (twenty four of them belonging to the Gibberella fujikuroi complex) isolated from banana and corn from different geographical regions were analyzed for their ability to produce fumonisins B1 and B2 and for genetic relatedness using random amplified polymorphic DNA (RAPD) and restriction analysis of PCR amplification products of the 5.8s ribosomal DNA-intervening internal transcribed spacer regions (ITS I-5.8S-ITS II). For RAPD analysis, six of twenty oligonucleotide primers were selected after testing with five Fusarium spp. isolates and used to characterize 24 additional isolates. DNA fragments from the 29 isolates of Fusarium spp., which were approximately 560 bp, were amplified with the universal primers ITS1 and ITS4. The restriction enzymes HaeIII, MboI, HpaII and MspI were useful for distinguishing the isolates. The RAPD analysis permitted to find interspecific differences among the isolates of Fusarium spp., between isolates with low and high capacity of fumonisin production and among isolates from different hosts. The restriction fragment length polymorphism (RFLP-PCR) analysis permitted to distinguish among different species of Fusarium. In combination with morphological analysis, the results of this research may find an application for the diagnosis of unknown Fusarium spp. and, particularly, for the characterization of fumonisin-producing isolates, which may be very useful in the food technology field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号