共查询到20条相似文献,搜索用时 0 毫秒
1.
《Applied and environmental microbiology》1984,47(6):1363
[This corrects the article on p. 1445 in vol. 46.]. 相似文献
2.
Anaerobic degradation of phthalate isomers by methanogenic consortia 总被引:11,自引:0,他引:11
Kleerebezem R Hulshoff Pol LW Lettinga G 《Applied and environmental microbiology》1999,65(3):1152-1160
3.
D Grbi?-Gali? 《Applied and environmental microbiology》1983,46(6):1442-1446
Coniferyl alcohol was shown to be completely biodegradable to carbon dioxide and methane under strictly anaerobic culture conditions. The mineralization of 300 mg of the substrate per liter was observed in acclimated ferulic acid-degrading methanogenic consortia, as well as in anaerobic enrichments on coniferyl alcohol seeded with sewage sludge. Ferulic and phenylpropionic acids were detected in the cultures degrading coniferyl alcohol as the sole carbon and energy source, suggesting that this compound is oxidized to ferulic acid, which is then degraded as previously described. 相似文献
4.
D Grbi-Gali 《Applied microbiology》1983,46(6):1442-1446
Coniferyl alcohol was shown to be completely biodegradable to carbon dioxide and methane under strictly anaerobic culture conditions. The mineralization of 300 mg of the substrate per liter was observed in acclimated ferulic acid-degrading methanogenic consortia, as well as in anaerobic enrichments on coniferyl alcohol seeded with sewage sludge. Ferulic and phenylpropionic acids were detected in the cultures degrading coniferyl alcohol as the sole carbon and energy source, suggesting that this compound is oxidized to ferulic acid, which is then degraded as previously described. 相似文献
5.
Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. 总被引:2,自引:2,他引:2 下载免费PDF全文
Sulfidogenic consortia enriched from an estuarine sediment were maintained on either 2-, 3-, or 4-chlorophenol as the only source of carbon and energy for over 5 years. The enrichment culture on 4-chlorophenol was the most active and this consortium was selected for further characterization. Utilization of chlorophenol resulted in sulfate depletion corresponding to the values expected for complete mineralization to CO2. Degradation of 4-chlorophenol was coupled to sulfate reduction, since substrate utilization was dependent on sulfidogenesis and chlorophenol loss did not proceed in the absence of sulfate. Other sulfur oxyanions, sulfite or thiosulfate, also served as electron acceptors for chlorophenol utilization, while carbonate, nitrate, and fumarate did not. The sulfidogenic consortium utilized phenol, 4-bromophenol, and 4-iodophenol in addition to 4-chlorophenol. 4-Fluorophenol, however, did not serve as a substrate. 4-Bromo- and 4-iodophenol were degraded with stoichiometric release of halide, and 4-[14C]bromophenol was mineralized, with 90% of the radiolabel recovered as CO2. 相似文献
6.
7.
Anaerobic degradation of cellulose by mixed culture 总被引:4,自引:0,他引:4
A W Khan 《Canadian journal of microbiology》1977,23(12):1700-1705
A mixed culture in which cellulose is capable of being converted to methane and carbon dioxide was obtained from an inoculum procured from a sewage-treatment plant and maintained in a synthetic medium containing tissue paper and an inorganic salt and vitamin mixture. The culture was tested for its ability to degrade 12 different paper and cotton products under batch conditions in 3-l anaerobic fermenters. This culture degraded 6-8 mmol/l per week of cellulose, expressed as glucose equivalents, with total gas yields of 0.3 m3/kg of cellulose degraded. The gas produced contained between 56 and 59% of methane. Maximum cellulose degradation occurred at chemical oxygen demand:nitrogen:phosphorus level of 80:5:1 and was adversely affected by high stirring rate. Also the presence of higher proportions of lignin in cellulose products adversely affected the ability of this culture to degrade cellulose. 相似文献
8.
Summary An anaerobic enrichment culture that degraded 0.4 mmol/l per day of o-phenylphenol was selected from sediment of a waste water pond of a sugar factory. From the consortium an o-phenylphenol-degrading bacterium, strain B10, was isolated. Strain B10 could not degrade other aromatic substances, including phenylacetic acid, benzoate, o-hydroxybenzoate, p-hydroxybenzoate and phenol. Best growth was observed with glucose, pyruvate, lactate, methanol and H2/CO2 as substrates. o-Phenylphenol was slowly degraded if supplied as the only carbon source and was cometabolized in the presence of >5 mmol/l glucose. Strain B10 has not yet been assigned to a known species or family. 相似文献
9.
Summary A phenylacetic acid-degrading mixed culture was enriched from effluent of an anaerobic reactor for the treatment of waste water from cellulose bleaching. From this consortium a phenylacetic acid-degrading pure culture, strain DSU3, was isolated and, due to its typical morphology and substrate spectrum, tentatively classified as a Desulfosarcina sp. It could grow on and degrade phenylacetic acid, cyclohexane carboxylate, cyclohexylacetate, benzoate, fumaric acid and several volatile fatty acids, while phenol, o-hydroxybenzoate, p-hydroxybenzoate and glucose were not utilized. Production of mandelic acid from phenylacetic acid by the enrichment culture and utilization of benzoate, an intermediate of the mandelic acid pathway, by strain DSU3 may presumably indicate degradation of phenylacetic acid via the mandelic acid pathway. 相似文献
10.
11.
Rodríguez-Fernández DE Rodríguez-León JA de Carvalho JC Sturm W Soccol CR 《Bioresource technology》2011,102(22):10657-10662
Solid-state fermentation (SSF) is defined as the growth of microbes without a free-flowing aqueous phase. The feasibility of using a citrus peel for producing pectinase and xylanase via the SSF process by Aspergillus niger F3 was evaluated in a 2 kg bioreactor. Different aeration conditions were tested to optimize the pectinase and xylanase production. The best air flow intensity was 1 V kg M (volumetric air flow per kilogram of medium), which allowed a sufficient amount of O2 for the microorganism growth producing 265 U/g and 65 U/g pectinases and xylanases, respectively. A mathematical model was applied to determine the different kinetic parameters related to SSF. The specific growth rate and biomass oxygen yield decreased during fermentation, whereas an increase in the maintenance coefficient for the different employed carbon sources was concurrently observed. 相似文献
12.
W Chen K Supanwong K Ohmiya S Shimizu H Kawakami 《Applied and environmental microbiology》1985,50(6):1451-1456
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. 相似文献
13.
Summary Pectin, dissolved in a mineral salts solution, was degraded anaerobically by a mixed population of bacteria in chemostat cultures (pH=6, T=30°C). At a dilution rate of 0.3 h–1, the specific volume activity was 45.7 (g substrate). (l reactor)–1.d–1. 相似文献
14.
Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. 总被引:4,自引:4,他引:0 下载免费PDF全文
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. 相似文献
15.
Summary Anaerobic methanogenesis of phenol using mixed cultures derived from cow dung and municipal sewage sludge and adapted to phenol was done in batch reactors. The phenol degradation rate depended on the period in which the culture was acclimated to phenol. Interference in phenol uptake by glucose was observed. Consumption of both phenol and acetic acid was observed when an acetate-adapted culure was used. A phenol-acclimated culture was able to degrade dihydroxy phenols thus indicating the feasibility of cross-acclimation.
Offprint requests to: P. Ghosh 相似文献
16.
Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria 总被引:12,自引:0,他引:12
Five strains of Gram-negative denitrifying bacteria that used various ketones as sole carbon and energy sources were isolated from activated sludge from a municipal sewage plant. Three strains are related to the genus Pseudomonas; two non-motile species have not yet been affiliated. All strains grew well with ketones and fatty acids (C2 to C7), but sugars were seldom utilized. The physiology of anaerobic acetone degradation was studied with strain BunN, which was originally enriched with butanone. Bicarbonate was essential for growth with acetone under anaerobic and aerobic conditions, but not if acetate or 3-hydroxybutyrate were used as substrates. An apparent Ks value of 5.6 mM-bicarbonate was determined for growth with acetone in batch culture. The molar growth yield was 24.8-29.8 g dry cell matter (mol acetone consumed)-1, with nitrate as the electron acceptor in batch culture; it varied slightly with the extent of poly-beta-hydroxybutyric acid (PHB) formation. During growth with acetone, 14CO2 was incorporated mainly into the C-1 atom of the monomers of the storage polymer PHB. With 3-hydroxybutyrate as substrate, 14CO2 incorporation into PHB was negligible. The results provide evidence that acetone is channelled into the intermediary metabolism of this strain via carboxylation to acetoacetate. 相似文献
17.
De Gregorio A Mandalari G Arena N Nucita F Tripodo MM Lo Curto RB 《Bioresource technology》2002,83(2):89-94
Single cell protein (SCP) and crude pectinolytic enzymes production from citrus pulps is reported. SCP and enzymes were produced by slurry-state flask cultivation of Aspergillus niger and Trichoderma viride on pulps from lemon juice clarification. Production as well as crude pectinase activity was not affected by the high dry matter content of the pulps. Both the protein content in the residue and the enzyme activity in the supernatant were higher in T. viride than in A. niger culture. The crude pectinase of T. viride, whose specific activity was similar to that found for a commercial concentrated preparation, could be utilized in the same citrus processing factory as well as in other factories which use large amounts of pectinolytic crude preparations, for example to enhance depuration plant performance. 相似文献
18.
A. V. Kurakov K. S. Khidirov V. S. Sadykova D. G. Zvyagintsev 《Applied Biochemistry and Microbiology》2011,47(2):169-175
The method proposed in this study was used to isolate fungi grown under anaerobic conditions and to reveal distinctions in their abundance and species composition in different habitats. The ability of micromycetes of different taxa to grow under anaerobic conditions and ensure alcohol fermentation was determined for a representative sample (344 strains belonging to more than 60 species). The group of fungi growing under anaerobic conditions included species with high, moderate, and low fermentation activity. The ability for anaerobic growth and fermentation depended on the taxonomic affiliation of fungi. In some cases, the expression of these characteristics depended on the habitat from which the strain was isolated. The maximum level of ethanol accumulation in culture liquid (1.2–4.7%) was detected for Absidia spinosa, Aspergillus sp. of group flavus, Aspergillus terreus, Acremonium sp., Mucor circinelloides, Mucor sp., Fusarium oxysporum, F. solani, F. sambucinum, Rhizopus arrhizus var. arrhizus, Trichoderma atroviride, and Trichoderma sp. 相似文献
19.
Summary Two newly isolated strains of Methanosarcina, strains JKAD and DALS, were grown in monoculture and in mixed culture in combination with Acetobacterium woodii WB1. Methanosarcina strains convert acetate into methane and carbon dioxide while Acetobacterium woodii grows on fructose, producing acetate via homoacetate fermentation. Monocultures of A. woodii in continuous culture consumed up to 6 mmoles g-1 dry weight (dw) h-1 of fructose and produced up to 12.9 mmoles g-1 dw h-1 of acetate at a dilution rate (D) of 0.13 h-1. In batch growth the methanogenic bacteria produced up to 12.1 mmoles g-1 dw h-1 of CH4 at a specific growth rate of 0.043 h-1. In continuous cultivation the specific growth rate and the specific methane production of Methanosarcina were lower than in batch cultures, with values of 0.031 h-1 and 3.1 mmoles g-1 dw h-1 of methane, respectively. In combination, A. woodii and Methanosarcina strain DALS in batch cultures completely converted fructose to methane and carbon dioxide with a maximum specific methane production rate of 1.9 mmoles g-1 dw h-1 of methane. In continuous cultivation these mixed cultures produced between 1.2 and 2 mmoles g-1 dw h-1 of CH4 at a dilution rate of up to 0.043 h-1. The methanogens were washed out at D values higher than 0.043 h-1 for A. woodii and Methanosarcina strain JKAD, and higher than 0.05 h-1 for A. woodii and Methanosarcina strain DALS. Data obtained from defined mixed cultures allow one to follow interactions in a mixed population of two species with different growth constants. 相似文献
20.
烟梗为原料固态发酵生产果胶酶 总被引:1,自引:0,他引:1
以烟梗为主要原料,采用单因素和正交实验对筛选到的丝状菌JXY-17固态发酵产果胶酶的培养基进行了优化,正交实验结果表明,影响该菌株产果胶酶的因素依次为含水量(料水比)(A)>(NH4)2SO4(B)>KH2PO4(D)>吐温-80(C),产酶培养基组成为A3B2C2D1,即固液比1∶1.5,(NH4)2SO4 5.0%,吐温-80 0.10%,KH2 PO40.20%.采用该固态发酵培养基,自然pH,接种量25 mL,装料量为50 g(干基)/1000 mL三角瓶,30℃恒温培养6d,产酶最高达8171.35U/g干曲,为初始酶活的3.8倍.提取酶液后的残余烟梗还可用于提取烟梗纤维类物质.残余烟梗的化学成分检测结果表明,与原始烟梗(或对照)相比,其果胶质降低了45%左右,残余烟梗固形物回收率约50%. 相似文献