首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Cockayne syndrome (CS) is a human disease characterized by sensitivity to sunlight, severe neurological abnormalities, and accelerated aging. CS has two complementation groups, CS-A and CS-B. The CSB gene encodes the CSB protein with 1493 amino acids. We previously reported that the CSB protein is involved in cellular repair of 8-hydroxyguanine, an abundant lesion in oxidatively damaged DNA and that the putative helicase motif V/VI of the CSB may play a role in this process. The present study investigated the role of the CSB protein in cellular repair of 8-hydroxyadenine (8-OH-Ade), another abundant lesion in oxidatively damaged DNA. Extracts of CS-B-null cells and mutant cells with site-directed mutation in the motif VI of the putative helicase domain incised 8-hydroxyadenine in vitro less efficiently than wild type cells. Furthermore, CS-B-null and motif VI mutant cells accumulated more 8-hydroxyadenine in their genomic DNA than wild type cells after exposure to gamma-radiation at doses of 2 or 5 Gy. These results suggest that the CSB protein contributes to cellular repair of 8-OH-Ade and that the motif VI of the putative helicase domain of CSB is required for this activity.  相似文献   

8.
9.
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.  相似文献   

10.
Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.  相似文献   

11.
This paper describes experiments involving the measurement of DNA damage and repair after treatment with 4-nitroquinoline 1-oxide (4NQO) or aflatoxin B1 (AFB1) epoxide in a number of mammalian cell cultures primarily associated with defects in the excision repair of UV-induced DNA damage. The results with transformed derivatives of XP cells belonging to different complementation groups showed that the extent of repair of 4NQO adducts at the N2 or C8 of guanosine did not correlate to the extent of repair reported by others after UV-irradiation. An examination of 4NQO repair in rodent UV-sensitive cell lines from different ERCC groups indicated that again there was little correlation between the extent of 4NQO and UV repair. However, regardless of complementation group those mutants that were defective in the repair of pyrimidine dimers and 6,4-photoproducts did exhibit a reduced ability to repair the 4NQO N2 guanosine adduct, whereas those mutants defective in pyrimidine dimer repair alone were able to repair this lesion as normal. In all of these cell lines there was a normal capacity to repair the 4NQO C8 guanosine adduct. Less extensive experiments involving AFB1 epoxide showed an XPC-transformed cell line was able to repair 40% of lesions after 6 h, whereas only 20% of repair is seen after UV. The rodent mutant V-C4 which belongs to the same ionising radiation group as irs2, was partially defective in repairing AFB1-induced damage. These experiments highlight the fact that although there are many commonalities between the repair of UV damages and lesions classed as large DNA adducts differences clearly exist, the most striking example here being the repair of the C8 guanosine 4NQO adduct which rarely correlates with a defect in UV repair.  相似文献   

12.
The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS).  相似文献   

13.
The most commonly measured marker of oxidative DNA damage is 8-oxo-7,8-dihydroguanine (8-oxoGua) or its deoxyribonucleoside (8-oxodGuo). Published estimates of the concentration of 8-oxoGua/8-oxodGuo in DNA of normal human cells vary over a range of three orders of magnitude. Analysis by chromatographic methods (GC-MS, HPLC with electrochemical detection (ECD) or HPLC-MS/MS) is beset by the problem of adventitious oxidation of guanine during sample preparation. An alternative approach, based on the use of the DNA repair enzyme formamidopyrimidine DNA N-glycosylase (FPG) to make breaks in the DNA at sites of the oxidised base, gives much lower values. ESCODD, the European Standards Committee on Oxidative DNA Damage, has been testing the ability of different laboratories using a variety of methods to measure 8-oxoGua in standard samples of 8-oxodGuo, calf thymus DNA, pig liver, oligonucleotides, and HeLa cells, and in lymphocytes isolated from blood of volunteers. HPLC-ECD is capable of measuring 8-oxodGuo induced experimentally in calf thymus DNA or HeLa cells with high accuracy. However, there is no sign of consensus over the background level of this damage, suggesting that, even though standard extraction procedures were used, variable oxidation of Gua is still occurring. GC-MS failed to detect a dose response of induced 8-oxoGua and cannot be regarded as a reliable method for measuring low levels of damage. HPLC-MS/MS as yet has not proved capable of measuring low levels of oxidative DNA damage. FPG-based methods seem to be less prone to the artefact of additional oxidation. Although they can be used quantitatively, they require careful calibration and standardisation if they are to be used in human biomonitoring. The background level of DNA oxidation in normal human cells is likely to be around 0.3-4.2 8-oxoGua per 10(6) Gua. An effort should be made to develop alternative, validated methods for estimating oxidative DNA damage.  相似文献   

14.
15.
It has been previously reported that the elevated accumulation of repair incision intermediates in cells from patients with combined characteristics of xeroderma pigmentosum complementation group D (XP-D) and Cockayne syndrome (CS) XP-D/CS fibroblasts following UV irradiation is caused by an "uncontrolled" incision of undamaged genomic DNA induced by UV-DNA-lesions which apparently are not removed. This could be an explanation for the extreme sensitivity of these cells to UV light. In the present study, we confirm the immediate DNA breakage following UV irradiation also for CS group B (CS-B) fibroblasts by DNA migration in the "comet assay" and extend these findings to other lesions such as 8-oxodeoxyguanosine (8-oxodG), selectively induced by KBrO3 treatment. In contrast, X-ray exposure does not induce differential DNA breakage. This indicates that additional lesions other than the UV-induced photoproducts (cyclobutane pyrimidine dimers, CPD, and 6-pyrimidine-4-pyrimidone products, 6-4 PP), such as 8-oxodG, specifically induced by KBrO3, are likely to trigger "uncontrolled" DNA breakage in the undamaged genomic DNA in the CS-B fibroblasts, thus accounting for some of the clinical features of these patients.  相似文献   

16.
17.
The European Standards Committee on Oxidative DNA Damage (ESCODD) was set up to resolve problems in the measurement of DNA oxidation that have resulted in varying estimates of the extent of this damage in humans. HeLa cells, sent to members for analysis, were either untreated, or treated with light in the presence of a photosensitizer to induce different amounts of 8-oxo-7,8-dihydroguanine (8-oxoGua) in DNA. Laboratories employing HPLC with electrochemical detection were able to measure the induced damage with similar efficiency; dose response gradients for seven of the eight sets of results were almost identical. GC-MS and HPLC-MS/MS, employed in three laboratories, did not convincingly detect the dose response. An alternative approach to measuring base oxidation employs the enzyme formamidopyrimidine DNA N-glycosylase (FPG) to convert 8-oxoGua to strand breaks, which are then measured by alkaline unwinding, alkaline elution, or the comet assay. Ten laboratories used this approach; five were able to detect the dose response in cells treated with photosensitizer plus light (at lower doses than for chromatographic methods, because the enzymic methods are more sensitive and less prone to spurious oxidation). Median values for 8-oxoGua (or FPG-sensitive sites) in untreated cells were 4.01 per 10(6) guanines for chromatographic methods, and 0.53 per 10(6) guanines for techniques based on FPG.  相似文献   

18.
Cockayne syndrome (CS) is an autosomal recessive disorder with dwarfism, mental retardation, sun sensitivity and a variety of other features. Cultured CS cells are hypersensitive to ultraviolet (UV) light, and following UV irradiation, CS cells are unable to restore RNA synthesis rates to normal levels. This has been attributed to a specific deficiency in CS cells in the ability to repair damage in actively transcribed regions of DNA at the rapid rate seen in normal cells. We have used the failure of recovery of RNA synthesis, following UV irradiation of CS cells, in a complementation test. Cells of different CS donors are fused. Restoration of normal RNA synthesis rates in UV-irradiated heterodikaryons indicates that the donors are in different complementation groups, whereas a failure to effect this recovery implies that they are in the same group. In an analysis of cell strains from 22 CS donors from several countries and different racial groups, we have assigned five cell strains to the CS-A group and the remaining 17 to CS-B. No obvious racial, clinical or cellular distinctions could be made between individuals in the two groups. Our analysis will assist the identification of mutations in the recently cloned CSA and CSB genes and the study of structure-function relationships. Received: 19 June 1995  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号