首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinin bases (zeatin and dihydrozeatin) and ribosides (zeatin riboside and dihydrozeatin riboside) were identified as major cytokinins in tobacco xylem sap by radioimmunoassay. When 3H-labelled zeatin riboside or dihydrozeatin riboside were supplied to tobacco plants via the xylem, leaves of differing maturity did not differ appreciably in level of radioactivity or in metabolism of the cytokinin. The major metabolites of zeatin riboside in leaves were adenine, adenosine and adenine nucleotides, whereas that of dihydrozeatin riboside was dihydrozeatin 7-glucoside. Incorporation of [14C]adenine into zeatin was evident in upper green leaves. indicating that young leaves have the capacity to synthesize cytokinins in situ. In contrast, fully expanded green leaves and senescing tobacco leaves exhibited little or no incorporation of [14C]adenine into cytokinins. This difference in cytokinin biosynthetic capacity may contribute to the differing cytokinin levels in leaves of different matirity, and may participate in control of sequential leaf senescence in tobacco.  相似文献   

2.
实验结果表明:烟划愈伤组织在生长和衰老期间,总呼吸速率(Vt)分别在11d和19d出现2次呼吸跃升;细胞色素途径的运行(ρ'Vcyt)与Vt的变化几乎一致,表明细胞色素途径仍组织主要的电子传递途径;交替途径容量(Valt)及其与Vt的比值(Valt/Vt):在15d前不断上升,而在15-19d之间处于稳定水平后下降。交替途径运行(ρValt)及其对Vt的贡献(ρValt/Vt)却与Valt变化趋势  相似文献   

3.
Sucrose metabolism during tobacco callus growth   总被引:1,自引:0,他引:1  
Activities of soluble and insoluble invertases and sucrose synthetase in tobacco callus increased significantly within the first 3 days of culture. After this period soluble invertase activity declined, while the activities of the insoluble invertase and the sucrose synthetase were relatively unchanged.  相似文献   

4.
Age related DNA changes in tobacco (Nicotiana tabacum) leaf nuclei were investigated by Feulgen cytophotometry, thermal denaturation, renaturation, and DNA-DNA hybridization studies during sequential leaf senescence. Cytophotometric Feulgen-DNA comparison measurements between young and senescing nuclei displayed 18% reduction in Feulgen-DNA values, with a corresponding decrease in nuclear area in senescing nuclei. Hydrolysis kinetics indicated that the loss was not due to compactness of the DNA as the curves for older nuclei were consistently lower than curves generated from younger nuclei. DNA loss in senescing nuclei was associated with a decrease in euchromatin or shift from euchromatin to facultative heterochromatin. Purified DNA from young and senescing leaf nuclei did not display different thermal profiles nor did hydroxylapatite chromatography reassociation curves. DNA-DNA hybridization in free solution from young and senescing leaf DNA performed by a Gilford thermo-programmer system indicated that DNA of senescing tobacco nuclei reassociated more slowly than DNA from young nuclei and the mixture of young and senescing leaf DNA displayed intermediate reassociation values. The study indicates that the DNA changes during senescence involve a complex phenomenon which includes the possibility of small single strand nicks undetectable by thermal denaturation, and a loss of small double strand fragments which were detectable only by precise DNA-DNA free solution reassociation and not by hydroxylapatite chromatography reassociation.  相似文献   

5.
Mitochondria isolated from tobacco ( Nicotiana tabacum L. cv. Wisconsin 38) callus growing on either shoot-forming or non-shoot forming medium show an increase in state 3 and state 4 respiration and a drop in respiratory control and ADP/O ratios after subculture. the protein content of the mitochondria fraction and the activity of succinate dehydrogenase, malate dehydrogenase, cytochrome c oxidase and catalase also increase after subculture but there is no apparent difference between shoot-forming and non-shoot-forming tissue. For mitochondria assayed at their native osmolarities, a trend of higher respiration rates and respiratory control as well as lower levels of cyanide-resistant respiration was observed for shoot-forming tissue. Generally, differences were greatest after day 9 in culture, the time during which primordia formation occurred in the shoot-forming callus. These patterns are in concert with the view that the shoot-forming process has a high energy requirement which must be realized during the time of primordia formation.  相似文献   

6.
The cytokinin complex in tobacco leaves of various maturities was characterized by radioimmunoassay and mass spectrometry. Zeatin was the major base, whereas zeatin riboside was identified as the main riboside. in leaves of all maturities studied. Relative to upper younger leaves, the basal yellow leaves had reduced levels of both cytokinin bases and ribosides. Exogenous applications of dihydrozeatin and zeatin to detached tobacco leaves in amounts sufficient to delay senescence, elevated cytokinin base and riboside levels 2–5 fold. Presenescent and senescent leaves of intact plants showed quantitatively similar changes in cytokinin content. which therefore appear to be of significance in control of senescence. When supplied exogenously, the principal cytokinin bases found to occur in tobacco leaves (zeatin and dihydrozeatin) were markedly more effective than auxins and gibberellic acid in retarding senescence. Localised application of cytokinins to leaf blades of detopped plants was much less effective than application to intact plants. The cytokinin induced senescence retardation in tobacco leaves was independent of effects on directed metabolite transport. Evidence that endogenous levels of active cytokinins in intact tobacco leaves are involved in control of sequential leaf senescence is discussed.  相似文献   

7.
Changes in isoperoxidases during shoot formation in tobacco callus   总被引:1,自引:0,他引:1  
Summary Shoot formation in tobacco (Nicotiana tabacum L.) callus is accompanied by an increase in peroxidase activity which takes a form similar to a sigmoid curve. The “stationary” phase coincide with the period of organ formation. Characteristic changes in isoperoxidase pattern are found in the shoot-forming part of the callus. These changes are different from those in the nonshoot-forming part or in gibberellin-treated tissue, which does not form shoots.  相似文献   

8.
There are indications that the cytokinin content in transgenic tissues expressing the cytokinin biosynthetic ipt gene is under metabolic control, which prevents the accumulation of cytokinins to lethal levels. The objective of this study was to investigate the relationships between the content of endogenous cytokinins and the activity of cytokinin oxidase (which is believed to be a copper-containing amine oxidase, EC 1.4.3.6.) in ipt transgenic tobacco callus. In addition, the effect of exogenously applied N-benzyladenine (BA) on this relationship was examined. Endogenous cytokinin concentrations were measured in callus of Nicotiana tabacum L. cv. Petit Havana SRI transformed with the ipt of Agrobacterium tumefaciens under the control of a light-inducible promoter and in non-transformed tissue using LC-tandem mass spectrometry. The activity of cytokinin oxidase was estimated by measuring the conversion of [2,8-3H]N6-(Δ2-isopentenyl)adenine to [3H]adenine by enzyme preparations in vitro. The 14-day-old ipt-transformed callus contained a 25-fold higher amount of cytokinins as compared to the non-transformed tissue. Mainly zeatin- and dihydrozeatin-types of cytokinins (free bases, ribosides, nucleotides and O-glucosides) accumulated in the ipt transgenic tissue. The cytokinin pool of both ipt-transformed and non-transformed tissues consisted predominantly of cytokinins that are either resistant to cytokinin oxidase attack (nucleotides and O-glucosides of cytokinins and cytokinins bearing N6-saturated side chain) or have a low affinity for the enzyme (zeatin and its riboside). The former represented 71.6 and 74.8% and the latter 27.7 and 24.4% of the pool of endogenous cytokinins in ipt-transformed and non-transformed tissues, respectively. Enzyme preparations from ipt-transformed tissue exhibited 1.5-fold higher cytokinin oxidase activity compared with that observed in control tissues. Application of exogenous BA affected the total levels of cytokinins of the two tissue lines in different ways. The cytokinin content increased by 1.7- and 1.5-fold in ipt-transformed tissues 6 and 12 h after BA application, respectively, while it declined in the non-transformed control by 1.6- to 2.0-fold between 3 and 12 h after BA application. The increase in cytokinin content in the ipt callus is due to an increase of zeatin- and dihydrozeatin-type cytokinins (nucleotides, ribosides and free bases) leading to an enhanced accumulation of O-glucosides after 12 h. Following BA treatment, the cytokinin oxidase activity increased up to 1.8-fold in ipt-transformed and 1.6-fold in non-transformed tissues. The levels of isopentenyl-type cytokinins were near the detection limit; however, the enhancement of cytokinin oxidase activity after BA treatment in both tissue lines was correlated with the content of preferred substrate of the enzyme, N6-(Δ2-isopentenyl)adenosine.  相似文献   

9.
烟草愈伤组织继代培养与分化期间核酸代谢的比较研究   总被引:1,自引:1,他引:0  
Changes in the contents of DNA and RNA, RNA species, the synthesis rates of DNA and RNA, and the activity of DNase and RNase were investigated in the callus of tobacco (Nicotiana tabacum L. cv. Willow Leaf) during subculture and differentiation. The contents of DNA and RNA were higher in differentiating callus than that in subcultured callus. After day 12, the contents of DNA and RNA in differentiating callus rose continuously while the contents of DNA and RNA in subcultured callus remained constant. Changes in RNA species and its relationship to total RNA level were also analyzed. At the stage of shoot primordium formation in differentiating callus, the activity of RNase increased markedly and the synthesis rate of RNA increased continuously; while the RNase activity and the synthesis rate of RNA in subcultured callus were much lower during the same period. During the period of shoot growth, the synthesis rate of DNA in differentiating callus was elevated compared to that in subcultured callus. The results above suggested that the metabolism of nucleic acids in differentiating callus was more active than that in subcultured callus.  相似文献   

10.
R. Cooke  Y. Meyer 《Planta》1981,152(1):1-7
Tobacco mesophyll protoplasts cultivated in vitro do not synthesize a measurable quantity of chloroplastic ribosomal RNA, but actively synthesize cytoplasmic ribosomal RNA, polyadenylated RNA, and proteins. These syntheses are essentially independent of the presence of hormones in the culture medium and are thus related to the ageing phenomenon induced by isolation from the plant and in-vitro culture. At all stages of culture and in all culture media, protoplasts incorporate low levels of thymidine into their DNA. However, the incorporation of considerable quantities of thymidine, indicative of the S phase, only takes place after 25–30 h and requires the presence of auxin and cytokinin.Abbreviations 6-BA 6-benzyladenine - 2,4-D 2,4 dichlorophenoxyacetic acid - DPC diethylpyrocarbonate - OD optical density; oligo-dT cellulose-oligothymidylic acid-cellulose - poly A+ RNA polyadenylated RNA - poly A- RNA non-polyadenylated RNA - tRNA ribosomal RNA - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tris buffer Tris (hydroxymethyl)aminomethane - tRNA transfer RNA  相似文献   

11.
In addition to chlorophylls a and b, β-carotene, lutein, violaxanthin and neoxanthin, leaves of tobacco (Nicotiana tabacum L. cv. Virginia Gold) contain antheraxanthin in some harvests. In lower leaves, chlorophylls decreased more rapidly than carotenoids during senescence, but both types of pigment decreased at equal rates in upper leaves. The chlorophyll a:b ratio decreased only in post-mature leaves. Total carotenoid decreased with age, with the relative proportion of β-carotene increasing in lower leaves. Seasonal influences rather than age of leaf determines whether antheraxanthin is present. No esterified xanthophylls were found in senescent leaves.  相似文献   

12.
Nonstructural carbohydrate status and activities of ADP-glucose pyrophosphorylase (EC 2.7.7.27, ADPG pyrophosphorylase) and sucrose phosphate synthase (EC 2.4.1.14, SPS) were determined during ageing of tobacco ( Nicotiana tabacum L., cvs KY 14 and Speight G28) leaves sampled from control plants and from plants that had the apical meristem and subsequent axillary growth removed (detopped plants). Over the 30-day period shoot growth increased much more for control compared to detopped plants, but the increase in root growth was similar for both treatments. Dry matter and leaf area of the individual leaf used for enzyme and metabolite analysis were constant over time for controls but increased 5-fold for detopped plants. Ageing of control leaves was indicated by a progressive loss of chlorophyll and ribulose 1, 5-bisphosphate carboxylase (EC 4.1.1.39, Rubisco) activity; loss of these components was diminished for detopped plants. In contrast to chlorophyll and Rubisco activity, activities of ADPG pyrophosphorylase and SPS remained relatively constant over time for controls. Thus, under normal ageing conditions, changes in activities of ADPG pyrophosphorylase and SPS were not closely associated with changes in the standard senescence indicators chlorophyll and Rubisco activity. The activities of ADPG pyrophosphorylase and SPS were enhanced, relative to controls, within 6 days after applying the detopping treatment and activities remained high for the duration of the 30-day period. Detopping also led to increased concentrations of starch and sucrose, but the increases were not well correlated with changes in enzyme activities. The data indicated that the leaves of detopped plants functioned as both source leaves, with enhanced ability to synthesize carbohydrate, and sink leaves, with enhanced growth. Therefore, activities of ADPG pyrophosphorylase and SPS were more responsive to changes within an individual leaf than to changes in whole plant growth.  相似文献   

13.
Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a G6P, pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS.  相似文献   

14.
Benzyladenine (BA) was found to regulate the number of flower buds regenerated in vitro from pedicel tissue of tobacco. Flower bud induction was particularly sensitive to BA levels in the range of 0.45 to 1.0 μ M , where a two-fold increase in concentration caused a threefold rise in the number of buds. When tissues were fed radioactive BA for 24h, only 9–12% of the counts were recovered in the original compound. The rest was present in metabolites, tentatively identified as the mono-, di- and triribotides, 7- and 9-glucosides and 9-riboside of BA. The amount of growth regulator taken up and the quantities of BA and its metabolites in the explants were all linearly related to the concentration of the medium. The internal BA concentration was ca 60% of the level in the medium after 24 h. When the concentration in the medium was raised, relatively more BA remained in the non-conjugated form. However, this change in the equilibrium between BA and the conjugates is too small to account for the steep rise in the curve representing concentration vs effect between 0.45 and 1.0 μ M .  相似文献   

15.
Coniferyl and sinapyl alcohols were isolated, identified and quantitatively determined as unbound (or weakly bound) phenylpropanoids in neutral hot-water extracts of Nicotiana tabacum L. callus tissue. This is the first identification of these alcohols in cultured tobacco callus. Scopoletin was also detected in these extracts, and it was the most abundant of these three phenylpropanoids with concentrations that ranged from 50–119 μg/g dry wt. Coniferyl alcohol (17–34 μg/g dry wt.) and sinapyl alcohol (23–35 μg/g dry wt.) were present in nearly equimolar concentration ratios and at levels which were about half those determined for unbound (or weakly bound) scopoletin. The amount of scopoletin extracted increased about 10 times when 1 M HCl-50% methanol - 0.3% ascorbic acid was used as the extractant. This indicated that most scopoletin moieties were strongly bound, perhaps by acid-hydrolyzable linkage. Coniferyl alcohol and sinapyl alcohol were not found in the acid extracts, presumably because they were acid-labile. In general, the concentration of each endogenous unbound (or weakly bound) phenylpropanoid appeared to remain relatively constant throughout the growth phase of the subculture. The only exceptions to this were the relatively higher concentrations of scopoletin and coniferyl alcohol present during the initial 0–2 weeks of subculture.  相似文献   

16.
Sitbon F  Jonsson L 《Planta》2001,212(4):568-572
Transgenic tobacco (Nicotiana tabacum L.) plants with altered sterol composition were generated by transformation with plant cDNAs encoding type-1 and type-2 sterol methyltransferases (SMTs; EC 2.1.1.41). For both SMT1 and SMT2 transformants, the transformation was associated with a reduction in the level of cholesterol, a non-alkylated sterol. In SMT1 transformants a corresponding increase of alkylated sterols, mainly 24-methyl cholesterol, was observed. On the other hand, in SMT2 transformants the level of 24-methyl cholesterol was reduced, whereas the level of sitosterol was raised. No appreciable alteration of total sterol content was observed for either genotype. The general phenotype of transformants was similar to that of controls, although SMT2 transformants displayed a reduced height at anthesis. The results show that plant sterol composition can be altered by transformation with an SMT1 cDNA without adverse effects on growth and development, and provide evidence, in planta, that SMT1 acts at the initial step in sterol alkylation. Received: 27 June 2000 / Accepted: 22 July 2000  相似文献   

17.
A study was performed to determine the relationship between the protein content and protease activity in suspension cultures of rose (Rosa cv Paul's Scarlet) grown over a 30 day period. Protein levels and protease activity were calculated on a per culture and per cell basis. Older nongrowing 14 day-old cultures possessed the largest total protease activity, but the highest concentration of protease activity per cell was in young 4 day-old rapidly dividing cells.  相似文献   

18.
As reported in a previous paper [Lerchl et al. (1995) Plant Cell, 7, 259–270], expression of Escherichia coli inorganic pyrophosphatase in the cytosol under the control of the phloem-specific rolC promoter from, Agobacterium rhizogenes results in decreased growth of transgenic tobacco plants. In this paper we investigate the effect of the phloem-specific expression of pyrophosphatase on phloem metabolism, and on plant growth and allocation. A small decrease in the hexose phosphate/UDP-glucose ratio, the ATP/ADP ratio and the respiration rate in the midribs of the transformants provides evidence Hint mobilization of sucrose via pyrophosphate-dependent reactions is necessary for phloem energy metabolism. The source leaves of the transformants had higher levels of carbohydrates and amino acids and a much higher glutamine/glutamate ratio than the wild type, showing that export was inhibited and that the growth inhibition was not due to a lack of photoas-similates or organic nitrogen in the leaves. The accumulation of photoassimilates was paralleled by a decrease in photosynthesis, chlorophyll content and ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity, a small increase in hexose phosphates and triose phosphates and a decrease in glycerate 3-phosphate in the source leaves. There was a decrease of soluble sugars and amino acids in sink leaves of the transformants. In sink leaves amino acids decreased more than carbohydrates and a decrease in the glutamine/ glutamate ratio was observed. This was accompanied by a large decrease of nitrate. Sugars and amino acids were also reduced in the root tips of the transformants. The carbohydrate /amino acid ratio decreased 5-fold in the root tips, indicating a particularly smile shortage of carbohydrates. Relatively high levels of sugars and amino acids in the basal regions of the root and the increase in sugars in the midrib indicate that there is also increased leakage of assimilates out of the phloem during long-distance transport. Metabolism is required to maintain phloem function along the transport route, as well as for the initial step of loading. The transformants showed decreased stem and root growth. The growth inhibition was largest in conditions allowing rapid growth of the wild type (high light and nitrogen supply).  相似文献   

19.
Changes in ribosome population, RNA species and DNA composition in flower buds of apples ( Malus pumila Mill. cvs Ralls and White winter pearmain) were investigated during breaking of dormancy and development. After bursting of flower buds, total ribosomes increased approximately 4-fold, and the polyribosomal fraction increased from 66% to 94% of total ribosomes. The newly synthesized ribosomes were identified by incorporation of radioactive precursor. The observed decrease in specific radioactivity of the monoribosomes is caused by the recruitment of monoribo-somes into polyribosomes after breaking of dormancy.
In both cultivars, the 25S and 18S rRNA peaks increased to a high level on April 8. The peaks of low molecular weight RNA were apparently increased after initial swelling of the flower buds. The DNA of flower buds was separated into three bands by electrophoresis. The median band is the main band of nuclear DNAs. The ahead band and the slow-moving band are satellite components of nuclear DNAs, and they obviously rose after initial swelling of the flower buds. On April 8, when the flower buds had opened, two other small DNA bands could be detected. These results suggest that the changes in level of different ribosome populations, RNA species and DNA composition are related to dormancy breaking development of apple flower buds.  相似文献   

20.
Enzymatic labeling of nucleic acids is a fundamental tool in molecular biology with virtually every aspect of nucleic acid hybridization technique involving the use of labeled probes. Different methods for enzymatic labeling of DNA, RNA and oligonucleotide probes are available today. In this review, we will describe both radioactive and nonradioactive labeling methods, yet the choice of system for labeling the probe depends on the application under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号