首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp221-Lys231 (peptide B8) and Cys234-Lys249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an alpha-helical array of 39 A which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase beta that has been implicated in the binding of DNA template.  相似文献   

2.
A reverse-phase HPLC System for isolation of the water insoluble alpha- and beta-polypeptides of the light-harvesting complex II (LH II) of Rhodopseudomonas (Rps.) palustris without employment of any detergent was developed. The material obtained was of high purity and suitable for direct microsequence analysis. Chromatographic analysis could resolve at least two major beta-polypeptides, beta a and beta b, two major alpha-polypeptides, alpha a and alpha b, and two additional minor polypeptides. N-terminal amino acid sequencing shows that the resolved peaks correspond to different polypeptide species and that the minor species have an N-terminal sequence identical to that of the alpha b polypeptide. An oligonucleotide derived from the amino terminal sequence of the alpha a polypeptide was utilized to screen a genomic library from Rps.palustris. Several independent clones have been characterized by Southern blot and nucleotide sequence analysis. We show that Rps.palustris contains at least four different clusters of beta and alpha genes. Two clones contain sequences potentially coding for beta a-alpha a and beta b-alpha b polypeptides; and two additional clones potentially coding for beta and alpha peptides which we named beta c-alpha c and beta d-alpha d, which did not correspond to the major purified polypeptides. In addition to the protein chemistry data, the conservation at the amino acid level and the presence of canonical ribosomal binding sites upstream of each of the identified genes strongly suggest that all four coding regions are expressed.  相似文献   

3.
A lactococcal bacteriocin, termed lactococcin G, was purified to homogeneity by a simple four-step purification procedure that includes ammonium sulfate precipitation, binding to a cation exchanger and octyl-Sepharose CL-4B, and reverse-phase chromatography. The final yield was about 20%, and nearly a 7,000-fold increase in the specific activity was obtained. The bacteriocin activity was associated with three peptides, termed alpha 1, alpha 2, and beta, which were separated by reverse-phase chromatography. Judging from their amino acid sequences, alpha 1 and alpha 2 were the same gene product. Differences in their configurations presumably resulted in alpha 2 having a slightly lower affinity for the reverse-phase column than alpha 1 and a reduced bacteriocin activity when combined with beta. Bacteriocin activity required the complementary action of both the alpha and the beta peptides. When neither alpha 1 nor beta was in excess, about 0.3 nM alpha 1 and 0.04 nM beta induced 50% growth inhibition, suggesting that they might interact in a 7:1 or 8:1 ratio. As judged by the amino acid sequence, alpha 1 has an isoelectric point of 10.9, an extinction coefficient of 1.3 x 10(4) M-1 cm-1, and a molecular weight of 4,346 (39 amino acid residues long). Similarly, beta has an isoelectric point of 10.4, an extinction coefficient of 2.4 x 10(4) M-1 cm-1, and a molecular weight of 4110 (35 amino acid residues long). Molecular weights of 4,376 and 4,109 for alpha 1 and beta, respectively, were obtained by mass spectrometry. The N-terminal halves of both the alpha and beta peptides may form amphiphilic alpha-helices, suggesting that the peptides are pore-forming toxins that create cell membrane channels through a "barrel-stave" mechanism. The C-terminal halves of both peptides consist largely of polar amino acids.  相似文献   

4.
Previous studies have identified the guanine and adenine binding domains of the GTP and ADP binding sites of GDH. In this study the peptide sequences within or near to the terminal phosphate-binding domains of the GTP and ADP binding sites of bovine liver glutamate dehydrogenase (GDH) were identified using photoaffinity labeling with the benzophenone nucleotide derivatives, [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP. Without activating light, GTPgammaBP exhibited inhibiting effects on the GDH reaction similar to GTP; ATPgammaBP, as expected, produced activating effects similar to those of ADP. Photoinsertion into GDH by both probes exhibited saturation effects in agreement with the respective kinetic effects. Specificity of labeling was supported by specific and effective reduction of photoinsertion of [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP into GDH by GTP and ADP, respectively. Using a combination of immobilized Fe3+-chelate affinity chromatography and reversed-phase HPLC, photolabeled peptides located within or near the phosphate-binding domains of the GTP and ADP sites were isolated. Sequence analysis showed that GTPgammaBP primarily modified a peptide near the middle of the GDH sequence, Asn135-Lys143 and Glu290-Lys295. However, ATPgammaBP modified a single peptide corresponding to the sequence Met411-Arg419 near the C-terminal domain. Using these results and the data from the previously identified base-binding domain peptides the orientation of GTP and ADP within their respective binding sites in the catalytic cleft of GDH is proposed and explained on the basis of a proposed three-dimensional schematic model structure derived from the bacterial enzyme.  相似文献   

5.
Photoaffinity labeling with azidoadenine nucleotides was used to identify peptides from the ATP and AMP binding domains on chicken muscle adenylate kinase. Competition binding studies and enzyme assays showed that the 8-azido analogues of Ap4A and ATP modified only the MgATP2- site of adenylate kinase, whereas the 2-azido analogue of ADP modified the enzyme at both the ATP and AMP sites. The positions of the two nucleotide binding sites on the enzyme were deduced by isolating and sequencing the modified peptides. Photolabeled peptides were isolated by a new procedure that used metal chelate chromatography to affinity purify the photolabeled peptides prior to final purification by reverse-phase HPLC. The sequences of the peptides that were photolabeled with the 8-azido analogues corresponded to residues K28-L44, T153-K166, and T125-E135 of the chicken muscle enzyme. The residues that were present in both tryptic- and Staphylococcus aureus V-8 protease-generated versions of these peptides were assigned to the ATP binding domain on the basis of selective photoaffinity labeling with the 8-azidoadenine analogues. These peptides and an additional peptide corresponding to positions I110-K123 were photolabeled with 2-N3ADP. Since I110-K123 was photolabeled by 2-N3ADP but not by 8-N3Ap4A, it was assigned to the AMP binding domain.  相似文献   

6.
R Lodaya  S R Blanke  R J Collier  J T Slama 《Biochemistry》1999,38(42):13877-13886
Diphtheria toxin fragment A (DT-A) is an important enzyme in the class of mono(ADP-ribosyl)transferases. To identify peptides and amino acid residues which form the NAD(+) binding site of DT-A using a photoaffinity approach, the photoprobes nicotinamide 8-azidoadenine dinucleotide (8-N(3)-NAD) and nicotinamide 2-azidoadenine dinucleotide (2-N(3)-NAD) were synthesized. Binding studies gave an IC(50) of 2.5 microM for 8-N(3)-NAD and 5.0 microM for 2-N(3)-NAD. Irradiation of DT-A and low concentrations of [alpha-(32)P]-8-N(3)-NAD with short-wavelength UV light resulted in rapid covalent incorporation of the photoprobe into the protein. The photoincorporation was shown to be specific for the active site with a stoichiometry of photoincorporation of 75-80%. After proteolytic digestion of photolabeled DT-A, derivatized peptides were isolated using immobilized boronate affinity chromatography followed by reversed phase HPLC. Radiolabeled peptides originating from two regions of the protein were identified. Chymotryptic digestion produced labeled peptides corresponding to His(21)-Gln(32) and Lys(33)-Phe(53). Lys-C digestion gave overlapping peptides Ser(11)-Lys(33) and Ser(40)-Lys(59). Tyr(27) was identified as the site of photoinsertion within the peptide His(21)-Gln(32) on the basis of the absence of PTH-Tyr at the predicted cycle during sequence analysis and by the lack of predicted chymotryptic cleavage at Tyr(27). Within the second modified peptide Ser(40)-Lys(59), Trp(50) is the most probable site of modification. Identification of Tyr(27) as a site of photoinsertion is in agreement with its placement in the NAD binding site of the X-ray structure of the proenzyme DT-NAD complex [Bell, C. E., and Eisenberg, D. (1996) Biochemistry 35, 1137]. Trp(50) is far from the adenine ring in the crystallographic model; however, site-directed mutagenesis studies suggest that Trp(50) is a major determinant of NAD binding affinity [Wilson, B. A., Blanke, S. R., Reich, K. A., and Collier, R. J. (1994) J. Biol. Chem. 269, 23296-23301].  相似文献   

7.
Z Vali  H A Scheraga 《Biochemistry》1988,27(6):1956-1963
Affinity chromatography of active site inhibited thrombin on immobilized fragments derived from the central (desAB-NDSK) and terminal (D1) globular domains of fibrinogen revealed that the site responsible for the binding of thrombin at its secondary fibrin binding site is located in the central domain. Chromatography of various domains of the central nodule (desAB-NDSK, fibrinogen E, and fibrin E) having nonidentical amino acid sequences showed that all of these fragments are capable of binding to PMSF-thrombin-Sepharose, suggesting that the thrombin binding site resides within the peptide regions common to all of these fragments: alpha(Gly17-Met51), beta(Val55-Met118), and gamma(Tyr1-Lys53). Competitive affinity chromatography of the same binding domains revealed that there is no detectable difference in their binding constants to PMSF-thrombin-Sepharose, indicating that the alpha(Lys52-Lys78), beta(Gly15-Lys54)/(Tyr119-Lys122), and gamma(Thr54-Met78) peptide segments do not contribute significantly to the binding of thrombin. Chromatography of the isolated chains of fibrinogen E showed that the alpha(Gly17-Lys78) peptide region itself contains a strong binding site for PMSF-thrombin-Sepharose. The location of the binding site suggests that the secondary site interaction may play an important role in determining the cleavage specificity of thrombin on fibrinogen and can affect the rate of release of the fibrinopeptides. Affinity chromatography of fragments prepared from polymerized fibrin showed that cross-linked DD (D x D) itself does not bind to thrombin, whereas the D x DE complex remained attached to the column, suggesting that the binding site on fragment E for thrombin is distinct from its binding site for D x D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A photoaffinity analogue of dATP, 8-azido-2'-deoxyadenosine 5'-triphosphate (8-azido-dATP), was used to probe the nucleotide binding site of the non-template-directed DNA polymerase terminal deoxynucleotidyl transferase (EC 2.7.7.31). The Mg2+ form of 8-azido-dATP was shown to be an efficient enzyme substrate with a Km of 53 microM. Loss of enzyme activity occurred during UV photolysis only in the presence of 8-azido-dATP. At saturation (120 microM 8-azido-dATP), 54% of the protein molecules were modified as determined by inhibition of enzyme activity. Kinetic analysis of enzyme inhibition induced by photoincorporation of 8-azido-dATP indicated an apparent Kd of approximately 38 microM. Addition of 2 mM dATP to 120 microM 8-azido-dATP resulted in greater than 90% protection from photoinduced loss of enzyme activity. In contrast, no protection was observed with the addition of 2 mM dAMP. Enzyme inactivation was directly correlated with incorporation of radiolabeled 8-azido-dATP into the protein and UV-induced destruction of the azido group. Photoincorporation of 8-azido-dATP into terminal transferase was reduced by all purine and pyrimidine deoxynucleoside triphosphates of which dGTP was the most effective. The alpha and beta polypeptides of calf terminal transferase were specifically photolabeled by [gamma-32P]-8-azido-dATP, and both polypeptides were equally protected by all four deoxynucleoside triphosphates. This suggests that the nucleotide binding domain involves components from both polypeptides.  相似文献   

9.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

10.
The formation of a fibrin clot occurs through binding of putative complementary sites, called fibrin polymerization sites, located in the NH2- and COOH-terminal domains of fibrin monomer molecules. In this study, we have investigated the structure of the NH2-terminal fibrin polymerization site by using fibrinogen-derived peptides and fragments. Fibrinogen was digested with Crotalus atrox protease III, to two major molecular species: a Mr 325,000 derivative (Fg325) and a peptide of Mr 5000. The peptide and its thrombin-cleavage product were purified by ion-exchange and reverse-phase HPLC; the authenticity of the B beta 1-42 and beta 15-42 peptides, respectively, was confirmed by amino acid sequencing. Since Fg325 had decreased thrombin coagulability, we addressed the question of whether the peptide B beta 1-42 contained a fibrin polymerization site. In order to identify and map the site, the peptides B beta 1-42 and beta 15-42 were tested for their ability to inhibit fibrin monomer polymerization. In addition the following peptides prepared by chemical synthesis were also tested: beta 15-18, beta 15-26, beta 24-42, beta 40-54, beta 50-55, and alpha 17-19-Pro. While B beta 1-42 had no inhibitory activity, the peptide devoid of fibrinopeptide B, beta 15-42, was a strong inhibitor. The peptides beta 15-18, beta 15-26, and beta 15-42 decreased the rate of fibrin polymerization by 50% at a molar excess of the peptide to fibrin monomer of 500, 430, and 50, respectively. The peptides beta 24-42, beta 40-54, and beta 50-55 were inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Modified lysines resulting from the cross-linking of the 3' end of tRNA(Phe) to yeast phenylalanyl-tRNA synthetase (an enzyme with an alpha 2 beta 2 structure) have been characterized by sequencing the labeled chymotryptic peptides that were isolated by means of gel filtration and reversed-phase chromatography. The analysis showed that Lys131 and Lys436 in the alpha subunit are the target sites of periodate-oxidized tRNA(Phe). Mutant protein with a Lys----Asn substitution established that each lysine contributes to the binding of the tRNA but is not essential for catalysis. The major labeled lysine (K131) belongs to the sequence IALQDKL (residues 126-132), which shares three identities with the peptide sequence ADKL found around the tRNAox-labeled Lys61 in the large subunit of Escherichia coli phenylalanyl-tRNA synthetase [Hountondji, C., Schmitter, J. M., Beauvallet, C., & Blanquet, S. (1987) Biochemistry 26, 5433-5439].  相似文献   

12.
A new, coculture-inducible two-peptide bacteriocin named plantaricin NC8 (PLNC8) was isolated from Lactobacillus plantarum NC8 cultures which had been induced with Lactococcus lactis MG1363 or Pediococcus pentosaceus FBB63. This bacteriocin consists of two distinct peptides, named alpha and beta, which were separated by C(2)-C(18) reverse-phase chromatography and whose complementary action is necessary for full plantaricin NC8 activity. N-terminal sequencing of both purified peptides showed 28 and 34 amino acids residues for PLNC8 alpha and PLNC8 beta, respectively, which showed no sequence similarity to other known bacteriocins. Mass spectrometry analysis showed molecular masses of 3,587 Da (alpha) and 4,000 Da (beta). The corresponding genes, designated plNC8A and plNC8B, were sequenced, and their nucleotide sequences revealed that both peptides are produced as bacteriocin precursors of 47 and 55 amino acids, respectively, which include N-terminal leader sequences of the double-glycine type. The mature alpha and beta peptides contain 29 and 34 amino acids, respectively. An open reading frame, orfC, which encodes a putative immunity protein was found downstream of plNC8B and overlapping plNC8A. Upstream of the putative -35 region of plNC8B, two direct repeats of 9 bp were identified, which agrees with the consensus sequence and structure of promoters of class II bacteriocin operons whose expression is dependent on an autoinduction mechanism.  相似文献   

13.
Yeast nuclear RNA polymerases are multisubunit enzymes that contain in common some small subunits. We show that the smallest, a 10-kDa component of three enzymes (A10, B10, and C10), is heterogeneous. In each case, it can be resolved into two distinct polypeptides (alpha and beta) by reverse-phase chromatography. A10 alpha, B10 alpha, and C10 alpha were indistinguishable on the basis of their electrophoretic and chromatographic behaviors, characteristic silver staining, and tryptic peptide analysis. All three polypeptides are blocked at their amino termini. By the same criteria, A10 beta, B10 beta, and C10 beta were also indistinguishable. The amino-terminal sequence of A10 beta and C10 beta corresponded to that of subunit B10 recently cloned by Woychik and Young (Woychik, N. A., and Young, R. A. (1990) J. Biol. Chem. 265, 17816-17819). Thus, the three forms of RNA polymerase share two additional and distinct polypeptides, ABC10 alpha and ABC10 beta, that therefore can be considered bona fide subunits of these enzymes. Interestingly, these two subunits bind zinc.  相似文献   

14.
Binding of eIF-4E to the 5' m7G cap structure of eukaryotic mRNA signals the initiation of protein synthesis. In order to investigate the molecular basis for this recognition, photoaffinity labeling with [gamma-32P]8-N3GTP was used in binding site studies of human recombinant cap binding protein eIF-4E. Competitive inhibition of this cap analogue by m7GTP and capped mRNA indicated probe specificity for interaction at the protein binding site. Saturation of the binding site with [gamma-32P]8-N3GTP further demonstrated the selectivity of photoinsertion. Aluminum (III)-chelate chromatography and reverse-phase HPLC were used to isolate the binding site peptide resulting from digestion of photolabeled eIF-4E with modified trypsin. Amino acid sequencing identified the binding domain as the region containing the sequence Trp 113-Arg 122.Lys 119 was not identified in sequencing analysis nor was it cleaved by trypsin. These results indicate that Lys 119 is the residue directly modified by photoinsertion of [gamma-32P]8-N3GTP. A detailed understanding of eIF-4E.m7G mRNA cap interactions may lead the way to regulating this essential protein-RNA interaction for specific mRNA in vivo.  相似文献   

15.
Glucagon, a peptide hormone synthesized and secreted by alpha islet cells, regulates glucose homeostasis by several mechanisms. Using [gamma 32P]8N3GTP, a proven photoaffinity probe for GTP, a specific nucleotide binding site on human glucagon was detected that showed preference for GTP. Half-maximal saturation of photoinsertion into the polypeptide hormone was at 8-12 microM with either [alpha 32P]8N3GTP or [gamma 32P]8N3GTP. GTP protected photolabeling with an apparent kd of 15 microM, whereas ATP was less effective as a protector, exhibiting an apparent kd of about 30 microM. Maximal protection by GTP and ATP was over 90%. UTP, CTP, GDP, ADP, GMP, AMP, guanosine, adenosine, guanine, and adenine were much less effective protectors, indicating that binding is specific for purine nucleoside triphosphates, particularly GTP. Mg2+ at 150 microM enhanced photoinsertion (twofold), whereas at 2-10 mM, it inhibited photoinsertion. Both Ca2+ and Zn2+ at 0.2 mM decreased photoinsertion about 45%. Purification of chymotryptic and tryptic digests of photolabeled glucagon by reverse-phase high performance liquid chromatography (HPLC) revealed that the N-terminal peptide, HSQGTF, was the only peptide region covalently photomodified by [32P]8N3GTP. GTP, if present during photolysis, greatly reduced both photoinsertion into glucagon and the amount of radiolabeled peptide recovered on HPLC. The specificity of binding to the N-terminal region is suggestive of a physiological role for a glucagon-GTP complex in the mechanism of action of this hormone.  相似文献   

16.
Using a combination of conventional and affinity chromatographic techniques, we have purified a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase (O-GlcNAc transferase) over 30,000-fold from rat liver cytosol. The transferase is soluble and very large, migrating with an apparent molecular weight of 340,000 on molecular sieve chromatography. Analysis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two protein species migrating at 110 (alpha subunit) and 78 (beta subunit) kDa in approximately a two-to-one ratio. Thus, the enzyme likely exists as a heterotrimer complex with two subunits of 110 kDa and one of 78 kDa (alpha 2 beta). The alpha subunit appears to contain the enzyme's active site since it is selectively radiolabeled by a specific photoaffinity probe (4-[beta-32P]thiouridine diphosphate). Photoinactivation and photolabeling of the enzyme are dependent on time and long wavelength ultraviolet light. Photolabeling of the alpha subunit is specifically blocked by UDP. The enzyme has an extremely high affinity for UDP-GlcNAc (Km = 545 nM). This unusually high affinity for the sugar nucleotide donor probably provides the enzyme an advantage over the nucleotide transporters in the endoplasmic reticulum and Golgi apparatus which compete for available cytoplasmic UDP-GlcNAc. The multimeric state and large size of the O-GlcNAc transferase imply that its activity may be highly regulated within the cell.  相似文献   

17.
A cDNA encoding mature human parathyroid hormone (hPTH) was expressed in Saccharomyces cerevisiae, after fusion to the prepro region of yeast mating factor alpha (MF alpha). Radioimmunoassay showed high levels of hPTH immunoreactive material in the growth medium (up to 10 micrograms/ml). More than 95% of the immunoreactive material was found extracellularly as multiple forms of hormone peptides. Three internal cleavage sites were identified in the hPTH molecule. The major cleavage site, after a pair of basic amino acids (aa) (Arg25Lys26 decreases Lys27), resembles that recognized by the KEX2 gene product on which the MF alpha expression-secretion system depends. The use of a protease-deficient yeast strain and the addition of high concentrations of aa to the growth medium, however, not only changed the peptide pattern, but also resulted in a significant increase in the yield of intact hPTH (1-84) (more than 20% of the total amount of immunoreactive material). The secreted hPTH (1-84) migrates like a hPTH standard in two different gel-electrophoretic systems, co-elutes with standard hPTH on reverse-phase high-performance liquid chromatography, reacts with two hPTH antibodies raised against different parts of the peptide, has a correct N-terminal aa sequence, and has full biological activity in a hormone-sensitive osteoblast adenylate cyclase assay.  相似文献   

18.
Partial chymotryptic digestion of purified avian myeloblastosis virus alpha beta DNA polymerase resulted in the activation of a Mg2+-dependent DNA endonuclease activity. Incubation of the polymerase-protease mixture in the presence of super-coiled DNA and Mg2+ permitted detection of the cleaved polymerase fragment possessing DNA nicking activity. Protease digestion conditions were established permitting selective cleavage of beta to alpha, which contained DNA polymerase and RNase H activity and to a family of polypeptides ranging in size from 30,000 to 34,000 daltons. These latter beta-unique fragments were purified by polyuridylate-Sepharose 4B chromatography and were shown to contain both DNA binding and DNA endonuclease activities. We have demonstrated that this group of polymerase fragments derived by chymotryptic digestion of alpha beta DNA polymerase is similar to the in vivo-isolated avian myeloblastosis virus p32pol in size, sequence, and DNA endonuclease activity.  相似文献   

19.
Plantaricin S, one of the two bacteriocins produced by Lactobacillus plantarum LPCO10, which was isolated from a green-olive fermentation (R. Jiménez-Díaz, R.M. Ríos-Sánchez, M. Desmazeaud, J.L.Ruiz-Barba, and J.-C. Piard, Appl. Environ. Microbiol. 59:1416-1424, 1993), has been purified to homogeneity by ammonium sulfate precipitation, by binding to SP-Sepharose fast-flow, phenyl-Sepharose CL-4B, and C2/C18 reverse-phase chromatographies. The purification resulted in a final yield of 91.6% and a 352,617-fold increase in the specific activity. The bacteriocin activity was associated with two distinct peptides, termed alpha and beta, which were separated by C2/C18 reverse-phase chromatography. Although beta alone appeared to retain a trace of inhibitory activity, the complementary action of both the alpha and beta peptides was required for full bacteriocin activity, as judged by both the agar well diffusion and the microtiter plate assays. From the N-terminal end, 26 and 24 amino acids residues of alpha and beta, respectively, were sequenced. Further attempts at sequencing revealed no additional amino acids residues, suggesting that either modifications in the next amino acid residue blocked the sequencing region or that the C-terminal end had been reached. The amino acid sequences of alpha and beta show no apparent homology to each or to other bacteriocins purified from lactic acid bacteria.  相似文献   

20.
The neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucinamide (1-27) (PHI) and the hormone secretin were purified from the small intestine of guinea pig, being detected by radioimmunoassay and radioreceptor assay throughout six to seven chromatographic steps. After elution on a reverse-phase C18 column, the three peptides were separated on a Fractogel column. After cation-exchange chromatography of each peptide on Mono S, the final steps were performed using a reverse-phase RP8-e column. Guinea pig PHI differed from porcine PHI in having Tyr and Arg residues instead of Phe and Lys in, respectively, position 10 and 20. We confirmed the original sequence of guinea pig VIP previously documented (with Leu5, Thr9, Met19 and Val26). We also established the similarity of the primary structure of guinea pig secretin with that of porcine and bovine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号