首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa.  相似文献   

2.
Radiation-inactivation studies were performed on brush-border-membrane vesicles purified from rat kidney cortex. No alteration of the structural integrity of the vesicles was apparent in electron micrographs of irradiated and unirradiated vesicles. The size distributions of the vesicles were also similar for both populations. The molecular sizes of two-brush-border-membrane enzymes, alkaline phosphatase and 5'-nucleotidase, estimated by the radiation-inactivation technique, were 104800 +/- 3500 and 89,400 +/- 1800 Da respectively. Polyacrylamide-gel-electrophoresis patterns of membrane proteins remained unaltered by the radiation treatment, except in the region of higher-molecular-mass proteins, where destruction of the proteins was visible. The molecular size of two of these proteins was estimated from their mobilities in polyacrylamide gels and was similar to the target size, estimated from densitometric scanning of the gel. Intravesicular volume, estimated by the uptake of D-glucose at equilibrium, was unaffected by irradiation. Uptake of Na+, D-glucose and phosphate were measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Na+-independent D-glucose and phosphate uptakes were totally unaffected in the dose range used (0-9 Mrad). The Na+-dependent uptake of D-glucose was studied in irradiated vesicles, and the molecular size of the transporter was found to be 288,000 Da. The size of the Na+-dependent phosphate carrier was also estimated, and a value of 234,000 Da was obtained.  相似文献   

3.
X-linked Hyp mice have a specific defect in Na(+)-dependent phosphate (Pi) transport at the renal brush border membrane (BBM). In the present study we examined the effect of the Hyp mutation on the molecular size of the Pi transporting unit and on Na(+)-dependent 14C-phosphonoformic (PFA) binding in renal BBM vesicles. By radiation inactivation analysis, we demonstrated that the molecular size of the Na(+)-Pi cotransporter is similar in normal (242 +/- 16 kDa) and Hyp mice (227 +/- 39 kDa). Moreover, while BBM Na(+)-dependent Pi transport is significantly reduced in Hyp mice (249 +/- 54 vs 465 +/- 82 pmol/mg protein/6s), genotype differences in (1) Na(+)-dependent PFA binding (1020 +/- 115 vs 1009 +/- 97 pmol/mg protein/30 min), (2) Pi-displaceable Na(+)-dependent PFA binding (605 +/- 82 vs 624 +/- 65 pmol/mg protein/6s), and (3) phosphate uptake at Na(+)-equilibrium (67 +/- 10 vs 54 +/- 7 pmol/mg protein/6s) are not apparent. The present data demonstrate that the molecular size of the renal BBM Na(+)-Pi cotransporter is normal in Hyp mice and suggest that the number of Na(+)-Pi cotransporters may not be reduced in the mutant strain.  相似文献   

4.
Na+-H+ exchange in rat and mouse renal brush-border membrane vesicles was studied by fluorescence quenching of the delta pH indicator, acridine orange. Brush-border membrane vesicles were isolated by a modified Mg/EGTA-precipitation method at low speed centrifugation (8000 X g). The enzymatic characteristics of these membrane vesicles were similar to those obtained by the original high-speed centrifugation method (Biber et al. (1981) Biochim. Biophys. Acta, 647, 169-176). The rates of Na+-H+ exchange in renal brush-border membrane vesicles from male and female rats were similar. Neither ovariectomy nor treatment of ovariectomized rats with estradiol or testosterone changed the activity of Na+-H+ exchanger. The rates of Na+-H+ exchange in the mouse were smaller than in the rat indicating the existence of species differences. Na+-H+ exchange in mouse renal brush-border membranes exhibit strong sex differences, the rates in the male being higher than in the female. Castration of male mice led to a decrease in Na+-H+ exchange to values found in females. Treatment of castrated mice with estradiol had no effect. In contrast, treatment with testosterone increased the rate of the exchanger by more than 100%. The effect of testosterone was restricted to the Vmax of the Na+-H+ exchanger, whereas the apparent Km for Na+ remained unchanged. Na+-dependent D-glucose transport in mouse renal luminal membranes exhibited also sex differences due to the potent stimulatory effect of testosterone. Therefore, Na+-H+ exchange and Na+-dependent D-glucose transport in the mouse kidney are under control of androgen hormones. This effect could be in close connection with the wellknown renotropic action of androgens in the mouse.  相似文献   

5.
The apparent target size of the sodium-dependent taurocholate transporter in basolateral rat liver plasma membrane vesicles, showing overshooting taurocholate uptake in the presence of sodium was estimated by radiation inactivation. Radiation at -105 to -120 degrees C and 2.5 Mrad/min causes a dose-dependent monoexponential reduction of the overshoot of taurocholate uptake in the presence of sodium. In contrast, taurocholate transport in the absence of sodium and taurocholate permeation at 4 degrees C remained totally unaffected by the radiation dose, indicating that the passive permeability of the membrane towards taurocholate remained unaffected. Radiation inactivation by high-energy electrons provides information about the size of the functional unit of the transporter in situ. The target size determined represents the size of the radiation-sensitive mass which is compact enough for significant energy transfer to occur within all parts of the transport system. The minimal function molecular mass was determined to be 170 kDa for the sodium-dependent taurocholate transporter. To prove the validity of radiation inactivation data four internal standard enzymes were tested under identical conditions.  相似文献   

6.
We examined the effect of histidine-specific reagents on the transport activity of the Na+-H+ exchanger in microvillus (brush-border) membrane vesicles isolated from the rabbit renal cortex. Rose bengal-catalyzed photo-oxidation caused irreversible inhibition of the rate of Na+-H+ exchange but also caused significant loss of vesicle integrity. Treatment of the membrane vesicles with diethylpyrocarbonate caused inactivation of Na+-H+ exchange that could not be attributed to vesicle disruption or collapse of transmembrane H+ gradients. Inactivation of Na+-H+ exchange by diethylpyrocarbonate followed pseudo-first order kinetics to below 10% residual activity, could be reversed by hydroxylamine, was reflected by a decreased Vmax with no change in the Km for Na+, was dependent on external pH but not internal pH, was blocked by amiloride, and was enhanced by Na+. These data are consistent with the hypothesis that a diethylpyrocarbonate-sensitive imidazolium residue is the titratable group found in kinetic studies to bind H+ at the external transport site of the Na+-H+ exchanger.  相似文献   

7.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

8.
The role of Na+-H+ exchange in Na+ transport across the apical membrane was evaluated in Necturus gallbladder epithelium by means of intracellular Na+ activity (aNai) and 22Na+ uptake measurements. Under control conditions, complete replacement of Na+ in the mucosal solution with tetramethylammonium reduced aNai from 14.0 to 6.9 mM in 2 min (P less than 0.001). Mucosal addition of the Na+-H+ exchange inhibitor amiloride (10(-3) M) reduced aNai from 15.0 to 13.3 mM (P less than 0.001), whereas bumetanide (10(-5) and 10(-4) M) had no effect. Na+ influx across the apical membrane was studied by treating the tissues with ouabain, bathing them in Na-free solutions, and suddenly replacing the mucosal solution with an Na-containing solution. When the mucosal solution was replaced with Na-Ringer's, aNai increased at approximately 11 mM/min. This increase was inhibited by 54% by amiloride (10(-3) M, P less than 0.001) and was unaffected by bumetanide (10(-5) M). Amiloride-inhibitable Na+ fluxes across the apical membrane were also induced by the imposition of pH gradients. Na+ influx was also examined in tissues that had not been treated with ouabain. Under control conditions, 22Na+ influx from the mucosal solution into the epithelium was linear over the first 60 s and was inhibited by 40% by amiloride (10(-3) M, P less than 0.001) and by 19% by bumetanide (10(-5) M, P less than 0.025). We conclude that Na+-H+ exchange is a major pathway for Na+ entry in Necturus gallbladder, which accounts for at least half of apical Na+ influx both under transporting conditions and during exposure to ouabain. Bumetanide-inhibitable Na+ entry mechanisms may account for only a smaller fraction of Na+ influx under transporting conditions, and cannot explain influx in ouabain-treated tissues. These results support the hypothesis that NaCl entry results primarily from the operation of parallel Na+-H+ and Cl--HCO-3 exchangers, and not from a bumetanide-inhibitable NaCl cotransporter.  相似文献   

9.
Earlier studies by our laboratory have suggested a relationship between an amiloride-sensitive Na+-H+ exchange process and the physical state of the lipids of rat colonic brush-border membrane vesicles. To further assess this possible relationship, a series of experiments were performed to examine the effect of dexamethasone administration (100 micrograms/100 g body wt. per day) subcutaneously for 4 days on Na+-H+ exchange, lipid composition and lipid fluidity of rat distal colonic brush-border membrane vesicles. The results of these studies demonstrate that dexamethasone treatment significantly: (1) increased the Vmax of the Na+-H+ exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange. 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across dexamethasone-treated brush-border membrane vesicles; (2) increased the lipid fluidity of treated-membrane vesicles compared to their control counterparts, as assessed by steady-state fluorescence polarization techniques using three different lipid-soluble fluorophores; and (3) increased the phospholipid content of treated-membrane vesicles thereby, decreasing the cholesterol/phospholipid molar ratio of treated compared to control preparations. This data, therefore, demonstrates that dexamethasone administration can modulate amiloride-sensitive Na+-H+ exchange in rat colonic distal brush-border membrane vesicles. Moreover, it adds support to the contention that a direct relationship exists between Na+-H+ exchange activity and the physical state of the lipids of rat colonic apical plasma membranes.  相似文献   

10.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

11.
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.  相似文献   

12.
1,2-Dimethylhydrazine, in weekly subcutaneous (s.c.) doses of 20 mg/kg body weight, produces colonic tumors in virtually 100% of rodents, with a latency period of approximately 6 months. To determine whether alterations in Na+-H+ exchange existed before the development of dimethylhydrazine-induced colon cancer, rats were given s.c. injections of this agent (20 mg/kg body wt. per per week) or diluent for 5 weeks. Animals were then killed, rat colonic brush-border membrane vesicles prepared and amiloride-sensitive sodium-stimulated proton efflux was measured and compared in control and treated-preparations. The results of these studies demonstrated that dimethylhydrazine treatment: (1) significantly increased the Vmax of this exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange; 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across treated-membrane vesicles; (2) did not appear to significantly influence Na+ permeability or proton conductance in treated-preparations compared to their control counterparts; and (3) did not significantly affect the kinetic parameters of amiloride-sensitive sodium-stimulated proton efflux in renal cortex brush-border membrane vesicles using acridine orange. This data, therefore, suggests that alterations in Na+-H+ exchange in rat colonic brush-border membranes may be involved in the malignant transformation process induced by this procarcinogen in the large intestine.  相似文献   

13.
Sodium transport was measured in brush-border membrane vesicles prepared from kidney cortex of the Milan hypertensive strain (MHS) rats and the corresponding normotensive controls. In the presence of an outwardly directed proton gradient, 22Na was transiently accumulated in the vesicles. When a transmembrane electrical potential was imposed across membrane vesicles, both the accumulation ratio and the initial uptake were increased, indicating the presence of an electrogenic pathway for sodium in these membranes. The potential-dependent sodium uptake was significantly higher in MHS rats. Kinetic analysis give simple Michaelis Menten curves in the presence and in the absence of a membrane potential. In both conditions Jmax was significantly increased in MHS rats, whereas Km was the same for the two rat strains. Sodium uptake was inhibited by amiloride at concentrations that inhibit Na+-H+ exchange. The presence of the higher, potential-sensitive, sodium uptake in MHS is in agreement with studies on renal physiology which support the hypothesis that an increase in tubular sodium reabsorption may be the primary cause for the development of hypertension in this rat strain.  相似文献   

14.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

15.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

16.
The inactivation of rat renal brush border membrane Na+-H+ exchange by the covalent carboxylate reagent N,N'-dicyclohexylcarbodiimide (DCCD) was studied by measuring 1 mM Na+ influx in the presence of a pH gradient (pHi = 5.5; pHo = 7.5) and H+ influx in the presence of a Na+ or Li+ gradient ([Na+]i = 150 mM; [Na+]o = 1.5 mM). In the presence of DCCD, the rate of Na+ uptake decreased exponentially with time and transport inhibition was irreversible. At all DCCD concentrations the loss of activity was described by a single exponential, consistent with one critical DCCD-reactive residue within the Na+-H+ exchanger. Among several carbodiimides the most hydrophobic carbodiimide, DCCD, was also the most effective inhibitor of Na+-H+ exchange. With 40 nmol of DCCD/mg of protein, at 20 degrees C for 30 min, 75% of the amiloride-sensitive 1 mM Na+ uptake was inhibited. Neither the equilibrium Na+ content nor the amiloride-insensitive Na+ uptake was significantly altered by the treatment. The Na+-dependent H+ flux, measured by the change in acridine orange absorbance, was also decreased 80% by the same DCCD treatment. If 150 mM NaCl, 150 mM LiCl, or 1 mM amiloride was present during incubation of the brush border membranes with 40 nmol of DCCD/mg of protein, then Li+-dependent H+ flux was protected 50, 100, or 100%, respectively, compared to membranes treated with DCCD in the absence of Na+-H+ exchanger substrates. The combination of DCCD and an exogenous nucleophile, e.g. ethylenediamine and glycine methyl ester, increased Na+-dependent H+ flux in the presence of 80 nmol of DCCD/mg of protein, compared to the transport after DCCD treatment alone. These findings suggest that the Na+-H+ exchanger contains a single carboxylate residue in a hydrophobic region of the protein, and the carboxylate and/or a nearby endogenous nucleophilic group is critical for exchange activity.  相似文献   

17.
Target sizes of the renal sodium-D-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at -50 degrees C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent D-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4-4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 +/- 38 000. From the tracer exchange experiments a molecular weight of 345 000 +/- 24 500 was calculated for the D-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and gamma-glutamyltransferase, whose target sizes were found to be 68 570 +/- 2670 and 73 500 +/- 2270, respectively. These findings provide further evidence for the assumption that the sodium-D-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and D-glucose translocation.  相似文献   

18.
The delta pH-dependent quenching of Acridine orange was used to characterize Na+-H+ exchange and K+ and H+ conductances in brush-border membrane vesicles isolated by precipitation with either CaCl2 or MgCl2 from rat kidney cortex. A transmembrane pH difference of 2.5 units (inside acidic) was imposed and the initial rate of its dissipation was followed after injecting a puls of tetramethylammonium gluconate (control) or sodium or potassium gluconate. In membranes isolated by CaCl2, the Na+-H+ exchange was partially electroneutral (45% to 77% of the total exchange) and the rest was due to electrically coupled Na+ and H+ movements through conductive pathways in the membranes. In membranes prepared by MgCl2, the rate of total Na+-H+ exchange was about twice as high as that in membranes obtained by CaCl2 precipitation. However, total and electroneutral exchanges were equal indicating negligible electrically coupled Na+ and H+ movements in these membranes. K0.5 for Na+ in all preparations was in the same range, being in average 30 mM. Amiloride was a competitive inhibitor of Na+-H+ exchange in membranes obtained with both preparations; Ki values ranged between 0.1 and 0.58 mM. The rates of delta pH-dissipation with K+ gradients (+/- valinomycin) were by 50% to 150% higher in membranes prepared with CaCl2 than in membranes isolated with MgCl2 indicating much higher H+ and K+ conductances in membranes obtained with CaCl2. Therefore, the rate of Na+-H+ exchange as well as the conductances for various ions in the isolated brush-border membranes depend on membrane preparation.  相似文献   

19.
We compared several features of Na(+)-dependent phosphono[14C]formic acid (PFA) binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles. From kinetic analyses, we estimated an apparent Km for PFA binding of 0.86 mM, an order of magnitude greater than that for phosphate and the high-affinity phosphate transport system. A hyperbolic Na(+)-saturation curve for PFA binding and a sigmoidal Na(+)-saturation curve for phosphate transport were demonstrated; based on these data, we estimated stoichiometries of 1:1 for Na+/PFA and 2:1 for Na+/phosphate. By radiation inactivation analysis, target sizes for brush border membrane protein(s) mediating Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport corresponded to molecular masses of 555 +/- 32 kDa and 205 +/- 36 kDa, respectively. Similar analysis of the phosphate-inhibitable component of Na(+)-dependent PFA binding gave a target size of 130 +/- 28 kDa. We also demonstrated that phosphate deprivation, which elicits a 2.6-fold increase in brush border membrane Na(+)-dependent phosphate transport, had no effect on either Na(+)-dependent PFA binding or on the target size for PFA binding. However, phosphate deprivation appeared to increase the target size for phosphate transport (from 255 +/- 32 to 335 +/- 75 kDa (P less than 0.01]. In summary, we present evidence for several differences between Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles and suggest that PFA may not interact exclusively with the proteins mediating Na(+)-phosphate co-transport.  相似文献   

20.
Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号