首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

2.
3.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

4.
These studies demonstrate that treatment of macrophages with lovastatin, a cholesterol-lowering drug that blocks farnesylation and geranylgeranylation of target proteins, increases LPS-induced TNF-alpha production. This is reversed by the addition of mevalonate, which bypasses the lovastatin block. Examination of membrane localization of RhoA, Cdc42, Rac1, and Ras demonstrated decreased membrane localization of the geranylgeranylated Rho family members (RhoA, Cdc42, and Rac1) with no change in the membrane localization of farnesylated Ras. LPS-induced TNF-alpha production in the presence of the Rho family-specific blocker (toxin B from Clostridium difficile) was significantly enhanced consistent with the lovastatin data. One intracellular signaling pathway that is required for TNF-alpha production by LPS is the extracellular signal-regulated kinase (ERK). Significantly, we found prolonged ERK activation after LPS stimulation of lovastatin-treated macrophages. When we inhibited ERK, we blocked the lovastatin-induced increase in TNF-alpha production. As a composite, these studies demonstrate a negative role for one or more Rho family GTPases in LPS-induced TNF-alpha production.  相似文献   

5.
The Rho GDP dissociation inhibitor (GDI) is an ubiquitously expressed regulatory protein involved in the cycling of Rho proteins between membrane-bound and soluble forms. Here, we characterized the Rho solubilization activity of a glutathione S-transferase (GST) - GDI fusion protein in a cell-free system derived from rat kidney. Addition of GST-GDI to kidney brush border membranes resulted in the specific release of Cdc42 and RhoA from the membranes, while RhoB and Ras were not extracted. The release of Cdc42 and RhoA by GST-GDI was dose dependent and saturable with about 50% of both RhoA and Cdc42 extracted. The unextracted Rho proteins were tightly bound to membranes and could not be solubilized by repeated GST-GDI treatment. These results demonstrated that kidney brush border membranes contained two populations of RhoA and Cdc42. Furthermore, the GST-GDI solubilizing activity on membrane-bound Cdc42 and RhoA was abolished at physiological conditions of salt and temperature in all tissues examined. When using bead-immobilized GST-GDI, KCl did not reduced the binding of Rho proteins. However, washing brush border membranes with KCl prior treatment by GST-GDI inhibited the extraction of Rho proteins. Taken together, these results suggest that the binding of GDI to membrane-bound Cdc42 and RhoA occurs easily under physiological ionic strength conditions, but a complementary factor is required to extract these proteins from membranes. These observations suggest that the shuttling activity of GDI upon Rho proteins could be normally downregulated under physiological conditions.  相似文献   

6.
7.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

8.
Members of the Rho subfamily of GTP-binding proteins regulate phospholipase D1 (PLD1) activity and signaling. In previous work, we demonstrated that binding of the Rho family member Cdc42 to PLD1 and the subsequent stimulation of its enzymatic activity are distinct events. Deletion of the insert helix from Cdc42 does not interfere with its switch I-mediated, GTP-dependent binding to PLD1 but inhibits Cdc42-stimulated PLD1 activity. To understand the mechanism of the insert-mediated activation of PLD1 by Cdc42 and to develop reagents to study Cdc42-activated PLD1 in cellular signaling events, we have undertaken a mutational analysis of the Rho insert region of Cdc42 and examined the specificity of the insert helix requirement in the other Rho family members, RhoA and Rac1. Here, we identify a critical residue, serine 124, in the Cdc42 insert helix central to its activation mechanism. Further, we examine this activation mechanism with respect to other members of the Rho family and demonstrate that each Rho protein activates PLD by distinct mechanisms, potentially allowing for unique signaling outcomes in the cell.  相似文献   

9.
RhoE Regulates Actin Cytoskeleton Organization and Cell Migration   总被引:20,自引:4,他引:16       下载免费PDF全文
The actin cytoskeleton is regulated by Rho family proteins: in fibroblasts, Rho mediates the formation of actin stress fibers, whereas Rac regulates lamellipodium formation and Cdc42 controls filopodium formation. We have cloned the mouse RhoE gene, whose product is a member of the Rho family that shares (except in one amino acid) the conserved effector domain of RhoA, RhoB, and RhoC. RhoE is able to bind GTP but does not detectably bind GDP and has low intrinsic GTPase activity compared with Rac. The role of RhoE in regulating actin organization was investigated by microinjection in Bac1.2F5 macrophages and MDCK cells. In macrophages, RhoE induced actin reorganization, leading to the formation of extensions resembling filopodia and pseudopodia. In MDCK cells, RhoE induced the complete disappearance of stress fibers, together with cell spreading. However, RhoE did not detectably affect the actin bundles that run parallel to the outer membranes of cells at the periphery of colonies, which are known to be dependent on RhoA. In addition, RhoE induced an increase in the speed of migration of hepatocyte growth factor/scatter factor-stimulated MDCK cells, in contrast to the previously reported inhibition produced by activated RhoA. The subcellular localization of RhoE at the lateral membranes of MDCK cells suggests a role in cell-cell adhesion, as has been shown for RhoA. These results suggest that RhoE may act to inhibit signalling downstream of RhoA, altering some RhoA-regulated responses, such as stress fiber formation, but not affecting others, such as peripheral actin bundle formation.  相似文献   

10.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

11.
The cytotoxic necrotizing factors (CNF)1 and CNF2 from pathogenic Escherichia coli strains activate RhoA, Rac1, and Cdc42 by deamidation of Gln63 (RhoA) or Gln61 (Rac and Cdc42). Recently, a novel cytotoxic necrotizing factor termed CNFY was identified in Yersinia pseudotuberculosis strains (Lockman, H. A., Gillespie, R. A., Baker, B. D., and Shakhnovich, E. (2002) Infect. Immun. 70, 2708-2714). We amplified the cnfy gene from genomic DNA of Y. pseudotuberculosis, cloned and expressed the recombinant protein, and studied its activity. Recombinant GST-CNFY induced morphological changes in HeLa cells and caused an upward shift of RhoA in SDS-PAGE, as is known for GST-CNF1 and GST-CNF2. Mass spectrometric analysis of GST-CNFY-treated RhoA confirmed deamidation at Glu63. Treatment of RhoA, Rac1, and Cdc42 with GST-CNFY decreased their GTPase activities, indicating that all of these Rho proteins could serve as substrates for GST-CNFY in vitro. In contrast, RhoA, but not Rac or Cdc42, was the substrate of GST-CNFY in culture cells. GST-CNFY caused marked stress fiber formation in HeLa cells after 2 h. In contrast to GST-CNF1, formation of filopodia or lamellipodia was not induced with GST-CNFY. Accordingly, effector pull-down experiments with lysates of toxin-treated cells revealed strong activation of RhoA but no activation of Rac1 or Cdc42 after 6 h of GST-CNFY-treatment. Moreover, in rat hippocampal neurons, GST-CNFY results in the retraction of neurites, indicating RhoA activation. In contrast, no activation of Rac or Cdc42 was found. Altogether, our data suggest that CNFY from Y. pseudotuberculosis is a strong, selective activator of RhoA, which can be used as a powerful tool for constitutive RhoA activation without concomitant activation of Rac1 or Cdc42.  相似文献   

12.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

13.
The Rho family of GTP-binding proteins plays a critical role in a variety of cellular processes, including cytoskeletal reorganization and activation of kinases such as p38 and C-jun N-terminal kinase (JNK) MAPKs. We report here that dominant negative forms of Rac1 and Cdc42Hs inhibit the expression of the muscle-specific genes myogenin, troponin T, and myosin heavy chain in L6 and C2 myoblasts. Such inhibition correlates with decreased p38 activity. Active RhoA, RhoG, Rac1, and Cdc42Hs also prevent myoblast-to-myotube transition but affect distinct stages: RhoG, Rac1, and Cdc42Hs inhibit the expression of all muscle-specific genes analyzed, whereas active RhoA potentiates their expression but prevents the myoblast fusion process. We further show by two different approaches that the inhibitory effects of active Rac1 and Cdc42Hs are independent of their morphogenic activities. Rather, myogenesis inhibition is mediated by the JNK pathway, which also leads to a cytoplasmic redistribution of Myf5. We propose that although Rho proteins are required for the commitment of myogenesis, they differentially influence this process, positively for RhoA and Rac1/Cdc42Hs through the activation of the SRF and p38 pathways, respectively, and negatively for Rac1/Cdc42Hs through the activation of the JNK pathway.  相似文献   

14.
Cardiomyocyte hypertrophy is observed in various cardiovascular diseases and causes heart failure. We here examined the role of small GTP-binding proteins of Rho family in phenylephrine (PE)-or leukocyte inhibitory factor (LIF)-induced hypertrophic morphogenesis of cultured neonatal rat cardiomyocytes. Both LIF and PE increased cell size of cardiomyocytes. LIF induced an increase in the length/width ratio of cardiomyocytes, while PE did not change the ratio. Adenoviral gene transfer of constitutively active mutants of Cdc42 increased the length/width ratio of cardiomyocytes and dominant negative mutants of Cdc42 conversely inhibited LIF-induced cell-elongation, while mutants of RhoA and Rac1 did not affect the length/width ratio of cardiomyocytes. These results suggest that Cdc42, but not RhoA and Rac1, is involved in LIF-induced sarcomere assembly in series in cardiomyocytes.  相似文献   

15.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.  相似文献   

16.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

17.
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through alpha 5 beta 1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.  相似文献   

18.
Regulation of neuronal morphology and activity-dependent synaptic modifications involves reorganization of the actin cytoskeleton. Dynamic changes of the actin cytoskeleton in many cell types are controlled by small GTPases of the Rho family, such as RhoA, Rac1 and Cdc42. As key regulators of both actin and microtubule cytoskeleton, Rho GTPases have also emerged as important regulators of dendrite and spine structural plasticity. Multiple studies suggest that Rac1 and Cdc42 are positive regulators promoting neurite outgrowth and growth cone protrusion, while the activation of RhoA induces stress fiber formation, leading to growth cone collapse and neurite retraction. This review focuses on recent advances in our understanding of the molecular mechanisms underlying physiological and pathological functions of Cdc42 in the nervous system. We also discuss application of different FRET-based biosensors as a powerful approach to examine the dynamics of Cdc42 activity in living cells.  相似文献   

19.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

20.
Axon extension during development of the nervous system is guided by many factors, but the signalling mechanisms responsible for triggering this extension remain mostly unknown. Here we have examined the role of Rho family small guanosine triphosphatases (GTPases) in mediating axon guidance by diffusible factors. Expression of either dominant-negative or constitutively active Cdc42 in cultured Xenopus laevis spinal neurons, at a concentration that does not substantially affect filopodial formation and neurite extension, abolishes the chemoattractive growth cone turning induced by a gradient of brain-derived neurotrophic factor that can activate Cdc42 and Rac in cultured neurons. Chemorepulsion induced by a gradient of lysophosphatidic acid is also abolished by the expression of dominant-negative RhoA. We also show that an asymmetry in Rho kinase or filopodial initiation across the growth cone is sufficient to trigger the turning response and that there is a crosstalk between the Cdc42 and RhoA pathways through their converging actions on the myosin activity essential for growth cone chemorepulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号