首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 13 non-electrolytes with moderate anesthetic potency on the order of DMPC liposomes were examined. Changes in order were monitored by steady-state fluorescence polarization techniques using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPG). At 30 degrees C, all of the compounds tested decreased the DPH steady-state anisotropy (rs), with potencies highly correlated to their oil/water partition coefficients. However, only the most hydrophobic anesthetics decreased TMA-DPH RS. Some of the most hydrophilic compounds, including ethanol and urethane, actually increased TMA-DPH rs, suggestive of an increase in membrane order. The concept of selectivity was borrowed from partitioning theory and used to explain some effects on anesthetic potency of decreasing temperature to 18 degrees C. In the gel as opposed to the liquid crystalline phase, selectivity for decreasing membrane order (as monitored by DPH) markedly increased, suggesting that anesthetic partitioning and/or the site of anesthetic action was occurring in a more hydrophobic domain. The solute-independent difference (or capacity) between two membranes for perturbation was defined as membrane sensitivity. Sensitivity appeared to also decrease with decreasing temperature, despite the decrease in membrane partitioning. This effect is thought to result from the selective delivery of the anesthetic solute to the membrane interior and away from more hydrophilic domains where anesthetics may order membrane structure.  相似文献   

2.
delta9-Tetrahydrocannabinol (THC) is very lipid soluble, as are many anesthetic agents. The action of anesthetics is nonspecific; isomers are equieffective. THC is optically active; therefore, the effects of its stereoisomers were studied on the electrically and chemically stimulated longitudinal muscle strip of guinea pig ileum. The results demonstrate that both isomers depress the response to electrical stimulation in a dose-related manner. The maximum effect is gradually reached in approximately 20 min. The (-) isomer is 24.6-fold more active than the (+) isomer (ED50 for (-) THC is 1.25 X 10(-7) M, for (+) THC, 3.08 X 10(-6) M) and the site of action appears to be presynaptic because responses to ACh are not significantly depressed. The depressant effects are relatively nonreversible. Membrane concentrations calculated at the ED50 values for the (-) isomer are of the order of 0.5 mM/kg dry membrane, well within the range for anesthesia. Thus THC may be regarded as a partial anesthetic since some of its actions are similar to those of the classical anesthetics, yet it possesses selective action at the neuronal membrane or tissue level.  相似文献   

3.
The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions.  相似文献   

4.
The structural features of volatile anesthetic binding sites on proteins are being examined with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Previous work has suggested that introducing a cavity into the hydrophobic core improves anesthetic binding affinity. The more polarizable methionine side chain was substituted for a leucine, in an attempt to enhance the dispersion forces between the ligand and the protein. The resulting bundle variant has an improved affinity (K(d) = 0.20 +/- 0.01 mM) for halothane binding, compared with the leucine-containing bundle (K(d) = 0.69 +/- 0.06 mM). Photoaffinity labeling with (14)C-halothane reveals preferential labeling of the W15 residue in both peptides, supporting the view that fluorescence quenching by bound anesthetic reports both the binding energetics and the location of the ligand in the hydrophobic core. The rates of amide hydrogen exchange were similar for the two bundles, suggesting that differences in binding affinity were not due to changes in protein stability. Binding of halothane to both four-alpha-helix bundle proteins stabilized the native folded conformations. Molecular dynamics simulations of the bundles illustrate the existence of the hydrophobic core, containing both W15 residues. These results suggest that in addition to packing defects, enhanced dispersion forces may be important in providing higher affinity anesthetic binding sites. Alternatively, the effect of the methionine substitution on halothane binding energetics may reflect either improved access to the binding site or allosteric optimization of the dimensions of the binding pocket. Finally, preferential stabilization of folded protein conformations may represent a fundamental mechanism of inhaled anesthetic action.  相似文献   

5.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning alpha-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of "the cation" in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation相似文献   

6.
Potassium channels are tetrameric membrane-spanning proteins that provide a selective pore for the conduction of K(+) across the cell membranes. One of the main physiological functions of potassium channels is efficient and very selective transport of K(+) ions through the membrane to the cell. Classical views of ion selectivity are summarized within a historical perspective, and contrasted with the molecular dynamics (MD) simulations free energy perturbation (FEP) performed on the basis of the crystallographic structure of the KcsA phospholipid membrane. The results show that the KcsA channel does not select for K(+) ions by providing a binding site of an appropriate (fixed) cavity size. Rather, selectivity for K(+) arises directly from the intrinsic local physical properties of the ligands coordinating the cation in the binding site, and is a robust feature of a pore symmetrically lined by backbone carbonyl groups. Further analysis reveals that it is the interplay between the attractive ion-ligand (favoring smaller cation) and repulsive ligand-ligand interactions (favoring larger cations) that is the basic element governing Na(+)/K(+) selectivity in flexible protein binding sites. Because the number and the type of ligands coordinating an ion directly modulate such local interactions, this provides a potent molecular mechanism to achieve and maintain a high selectivity in protein binding sites despite a significant conformational flexibility.  相似文献   

7.
Specific, high affinity binding sites for iodinated endothelin-1 ([125I]-ET-1) were identified in crude plasma and light membrane fractions harvested from aerobically perfused and ischaemic rat hearts, to determine whether the ischaemia-induced increase in binding site density (Bmax) involves externalization of the sites. In crude plasma membranes Bmax increased after 60 min ischaemia, from 113.5 +/- 2.15 to 180.6 +/- 4.67 fmol/mg protein (p less than 0.01). In the light membranes, the Bmax fell, from 94.7 +/- 8.70 to 63.80 +/- 6.26 fmol/mg protein (p less than 0.05). Hill coefficients and selectivity of both membrane fractions were unchanged. These results are interpreted as meaning that ischaemia causes externalization of cardiac [125I]-ET-1 binding sites.  相似文献   

8.
[3H]Spiroperidol binding to homogenates of rat striatum is saturable and shows either monophasic or biphasic saturation isotherms under specified conditions. In poorly washed membrane fragment preparations, saturation isotherms of [3H]spiroperidol binding are monophasic, revealing an apparently homogeneous set of sites with KD 0.6 +/- 0.3 nM and density 440 +/- 80 fmol/mg protein. However, equilibrium displacement studies of [3H]spiroperidol binding at this site indicate an alpha-adrenergic component in addition to the previously described dopaminergic component. In thoroughly washed membrane fragment preparations, saturation isotherms are clearly biphasic, showing an additional high-affinity site with an approximate KD of 24 +/- 10 pM and an approximate density of 110 +/- 20 fmol/mg protein at a protein concentration of 2.0 mg/ml. Selectivity at this site appears classically dopaminergic, suggesting that the lower affinity site is the primary source of the alpha-adrenergic component of spiroperidol binding.  相似文献   

9.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.  相似文献   

10.
The weaver mutation (G156S) in G-protein-gated inwardly rectifying K+ (GIRK) channels alters ion selectivity and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains (M1-pore-loop-M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in I1G1(M) is indistinguishable from that in GIRK2(wv) channels. Whereas chimera I1G1(M) loses K+ selectivity, although there are no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits normal K+ selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T) restores K+ selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from extracellular charged local anesthetics.  相似文献   

11.
Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of bacteriorhodopsin (bR) that changes in different states of the protein. The experiments are targeted to the active site of bR through 13C labeling of both the retinal chromophore and the Lys side chains of the protein. The time course of the rotor-driven magnetization exchange between a pair of 13C nuclei is then observed to determine the dipolar coupling and therefore the internuclear distance. Using this approach, we have measured the distance from [14-13C]retinal to [epsilon-13C]Lys216 in dark-adapted bR in order to examine the structure of the retinal-protein linkage and its role in coupling the isomerizations of retinal to unidirectional proton transfer. This distance depends on the configuration of the intervening C=N bond. The 3.0 +/- 0.2 A distance observed in bR555 demonstrates that the C=N bond is syn, and the 4.1 +/- 0.3 A distance observed in bR568 demonstrates that the C=N bond is anti. These direct distance determinations independently confirm the configurations previously deduced from solid-state NMR chemical shift and resonance Raman vibrational spectra. The spectral selectivity of rotational resonance allows these two distances to be measured independently in a sample containing both bR555 and bR568; the presence of both states and of 25% lipid in the sample demonstrates the use of rotational resonance to measure an active site distance in a membrane protein with an effective molecular mass of about 85 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Seven‐helix transmembrane proteins, including the G‐protein‐coupled receptors (GPCRs), mediate a broad range of fundamental cellular activities through binding to a wide range of ligands. Understanding the structural basis for the ligand‐binding selectivity of these proteins is of significance to their structure‐based drug design. Comparison analysis of proteins' ligand‐binding sites provides a useful way to study their structure‐activity relationships. Various computational methods have been developed for the binding‐site comparison of soluble proteins. In this work, we applied this approach to the analysis of the primary ligand‐binding sites of 92 seven‐helix transmembrane proteins. Results of the studies confirmed that the binding site of bacterial rhodopsins is indeed different from all GPCRs. In the latter group, further comparison of the binding sites indicated a group of residues that could be responsible for ligand‐binding selectivity and important for structure‐based drug design. Furthermore, unexpected binding‐site dissimilarities were observed among adrenergic and adenosine receptors, suggesting that the percentage of the overall sequence identity between a target protein and a template protein alone is not sufficient for selecting the best template for homology modeling of seven‐helix membrane proteins. These results provided novel insight into the structural basis of ligand‐binding selectivity of seven‐helix membrane proteins and are of practical use to the computational modeling of these proteins. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 31–38, 2011.  相似文献   

13.
D J Welsch  G L Nelsestuen 《Biochemistry》1988,27(13):4939-4945
Two acetylation sites on prothrombin fragment 1 (amino-terminal 156 amino acid residues of bovine prothrombin) are essential for the tight calcium and membrane binding functions of the protein; calcium protects both of these sites from acetylation [Welsch, D. J., Pletcher, C. H., & Nelsestuen, G. L. (1988) Biochemistry (first of three papers in this issue)]. The epsilon-amino groups of the lysine residues (positions 3, 11, 44, 57, and 97) were not critical to protein function and were acetylated in the calcium-protected protein. The most reactive of the two essential acetylation sites was identified as amino-terminal alanine. To identify this site, fragment 1 was first acetylated in the presence of calcium to derivatize the nonessential sites. Removal of calcium and partial acetylation with radioactive reagent produced a single major radioactive peptide. Isolation and characterization of this peptide showed that the radioactivity was associated with amino-terminal alanine. In addition, sequence analysis of calcium-protected protein showed the presence of underivatized amino-terminal alanine. Surprisingly, covalent modification with a trinitrophenyl group did not alter membrane binding activity. Thus, the positive charge on the amino terminus did not appear critical to its function. Acetylation of amino-terminal alanine without acetylation of the second essential site produced a fragment 1 derivative which had a high requirement for calcium and which had lost most membrane binding function. However, this protein had only slightly altered affinity for magnesium ion. In agreement with this metal ion selectivity, protection of amino-terminal alanine was calcium specific, and magnesium ion did not protect this site from acetylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations 相似文献   

15.
The ability to discriminate between different cations efficiently is essential for the proper physiological functioning of many membrane transport proteins. One obvious mechanism of ion selectivity is when a binding site is structurally constrained by the protein architecture and its geometry is precisely adapted to fit an ion of a given size. This mechanism is not effective in the case of flexible protein binding sites that are able to deform structurally or to adapt to a bound ion. In this study, the concept of nontrivial ion selectivity arising in a highly flexible protein binding site conceptually represented as a microdroplet of ligands confined to a small volume is explored. The environment imposed by the spatial confinement is a critical feature of the reduced models. A large number of reduced binding site models (1077) comprising typical ion-coordinating ligands (carbonyl, hydroxyl, carboxylate, water) are constructed and characterized for Na+/K+ and Ca2+/Ba2+ size selectivity using free energy perturbation molecular dynamics simulations. Free energies are highly correlated with the sum of ion-ligand and ligand-ligand mean interactions, but the relative balance of those two contributions is different for K+-selective and Na+-selective binding sites. The analysis indicates that both the number and the type of ligands are important factors in ion selectivity.  相似文献   

16.
The molecular site of anesthetic action remains an area of intense research interest. It is not clear whether general anesthetics act through direct binding to proteins or by perturbing the membrane properties of excitable tissues. Several studies indicate that anesthetics affect the properties of either membrane lipids or proteins. However, gaps remain in our understanding of the molecular mechanism of anesthetic action. Recent developments in membrane biology have led to the concept of small-scale domain structures in lipid and lipid--protein coupled systems. The role of such domain structures in anesthetic action has not been studied in detail. In the present study, we investigated the effect of anesthetics on lipid domain structures in model membranes using the fluorescent spectral properties of Laurdan (6-dodecanoyl-2-dimethylamino naphthalene). Propofol, a general anesthetic, promoted the formation of fluid domains in model membranes of dipalmitoyl phosphatidyl choline (DPPC) or mixtures of lipids of varying acyl chains (DPPC:DMPC dimyristoyl phosphatidyl choline 1:1). The estimated size of these domains is 20--50 A. Based on these studies, we speculate that the mechanism of anesthetic action may involve effects on protein--lipid coupled systems through alterations in small-scale lipid domain structures.  相似文献   

17.
Amphitropic proteins are regulated by reversible membrane interaction. Anionic phospholipids generally promote membrane binding of such proteins via electrostatics between the negatively charged lipid headgroups and clusters of basic groups on the proteins. In this study of one amphitropic protein, a cytidylyltransferase (CT) that regulates phosphatidylcholine synthesis, we found that substitution of lysines to glutamine along both interfacial strips of the membrane-binding amphipathic helix eliminated electrostatic binding. Unexpectedly, three glutamates also participate in the selectivity for anionic membrane surfaces. These glutamates become protonated in the low pH milieu at the surface of anionic, but not zwitterionic membranes, increasing protein positive charge and hydrophobicity. The binding and insertion into lipid vesicles of a synthetic peptide containing the three glutamates was pH-dependent with an apparent pK(a) that varied with anionic lipid content. Glutamate to glutamine substitution eliminated the pH dependence of the membrane interaction, and reduced anionic membrane selectivity of both the peptide and the whole CT enzyme examined in cells. Thus anionic lipids, working via surface-localized pH effects, can promote membrane binding by modifying protein charge and hydrophobicity, and this novel mechanism contributes to the membrane selectivity of CT in vivo.  相似文献   

18.
Opioid binding site in EL-4 thymoma cell line   总被引:1,自引:0,他引:1  
E Fiorica  S Spector 《Life sciences》1988,42(2):199-206
Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [3H] bremazocine indicated a single site with a KD = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10(6) cells (51 pmols/mg total cell proteins). To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [3H] bremazocine with an IC50 value = 0.57 microM. The two stereoisomers levorphanol and dextrorphan showed the same affinity for this site (IC50 = 2.9 microM and 1.9 microM respectively). While morphine, [D-Pen2, D-Pen5] enkephalin and beta-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC50 = 60 microM, that was similar to naloxone (IC50 = 69 microM).  相似文献   

19.
In the heterocellular toad skin epithelium the beta-adrenergic receptor agonist isoproterenol activates cyclic AMP-dependent Cl(-) channels that are not located in the principal cells. With four experimental approaches, in the present study, we tested the hypothesis that the signalling pathway targets cystic fibrosis transmembrane conductance regulator (CFTR)-chloride channels of mitochondria-rich cells. (i) Serosal application of isoproterenol (log(10)EC(50)=-7.1+/-0.2; Hill coefficient=1.1+/-0.2), as well as noradrenaline, activated an anion pathway with an apical selectivity sequence, G(Cl)>G(Br)> or =G(NO(3))>G(I), comparable to the published selectivity sequence of cloned human CFTR expressed in Xenopus oocytes. (ii) Known modulators of human CFTR, glibenclamide (200 micromol/l) and genistein (50 micromol/l), depressed and activated, respectively, the receptor-stimulated G(Cl). Genistein did not modify the anion selectivity. (iii) Transcellular voltage clamp studies of single isolated mitochondria-rich cells revealed functional beta-adrenergic receptors on the basolateral membrane. With approximately 60,000 mitochondria-rich cells per cm(2), the saturating activation of 11.9+/-1.6 nS/cell accounted for the measured isoproterenol-activated transepithelial conductance of 600-900 microS/cm(2). In forskolin-stimulated cells, glibenclamide (200 micromol/l) reversibly inhibited the transcellular conductance by 9.6+/-1.6 nS/cell. (iv) With primers constructed from cloned Xenopus CFTR and PCR amplification of reverse-transcribed mRNA from toad skin, full-length Bufo CFTR cDNA was generated. The derived protein of 1466 residues shows 86% homology with xCFTR and 89% homology with hCFTR. All major functional sequences, that is, the R- and the NBF1- and NBF2-domains are well-conserved as are the predicted transmembrane segments proposed to form the pore of the channel protein. These new results taken together with our previously identified small-conductance CFTR-like Cl(-) channel in the apical membrane of the mitochondria-rich cells lead to the conclusion that the toad's CFTR gene codes for a functional Cl(-) channel in the apical plasma membrane of this minority cell type.  相似文献   

20.
Protein P trimers isolated and purified from Pseudomonas aeruginosa outer membrane were reconstituted in planar lipid bilayer membranes from diphytanoyl phosphatidylcholine. The protein trimers formed highly anion-specific channels with an average single channel conductance of 160 pS in 0.1 M Cl solution. A variety of different nonvalent anions were found to be permeable through the channel, which suggests a channel diameter between 0.5 and 0.7 nm. The selectivity for the halides followed the Eisenman sequence AVI (without At-). The ion transport through the protein P channel could be explained reasonably well by a one-site, two-barrier model. The stability constant of the binding of Cl- to the site was 20 M-1 at neutral pH. The binding of anions to the site was pH dependent, which suggested that several charges are involved in the closely spaced selectivity filter. Permeability ratios for different anions as calculated from bi-ionic potentials showed agreement with corresponding ratios of single channel conductances. The protein P channels were not voltage-gated and had lifetimes of the order of several minutes. The current-voltage curves were linear for membrane potentials up to 150 mV, which suggested that Nernst-Planck-type barriers rather than Eyring barriers were involved in the movement of anions through the protein P channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号