首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Interferon-gamma augments hydrolysis of LTA4 to LTB4 by endothelial cells   总被引:1,自引:0,他引:1  
LTB4 is a potent mediator of inflammation acting at local sites of inflammation. LTB4 increases the lymphocyte binding to and penetration through the endothelium. In this paper we demonstrate that while endothelial cells were unable to metabolize LTB4 from arachidonic acid they were able to hydrolyse LTA4 into LTB4 in a granulocyte-endothelial co-culture assay. This hydrolysis is markedly increased if endothelial cells were pretreated with IFN-gamma prior to the assay. The IFN-gamma induced effect was shown to be time- and dose-dependent. The ability of endothelial cells to hydrolyse LTA4 to LTB4 may provide an answer how LTB4 can be produced in large quantities by nonheamatopoetic cells (i.e. by endothelial cells) at sites of acute inflammation.  相似文献   

2.
The data on the pharmacology of leukotrienes showed that LTA4, LTC4 and LTD4 were equipotent on the guinea-pig lung parenchyma whereas LTB4 was slightly less active. However, on the trachea, the myotropic activity of LTC4 and LTD4 was equivalent and higher than LTB4 and LTA4. The potency of these compounds was also different on the ileum where LTD4 was more active than LTC4; at the concentration used, LTA4 and LTB4 were inactive on this tissue. These results suggested that the transformation of leukotrienes by the smooth muscle preparations was a prerequisite for its biological activity. To verify this hypothesis, LTA4 (100 ng) was incubated for 10 min. with 20,000 g supernatants of homogenates of guinea-pig lung parenchyma, trachea and ileum; the metabolites were analysed by bioassay using strips of guinea-pig ileum and lung parenchyma in a cascade superfusion system and by RP-HPLC. Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4, which is in agreement with the myotropic potency of these leukotrienes on the lung parenchymal strip. Conversely, incubation of LTA4 with homogenates of guinea-pig ileum showed the formation of LTB4 and its isomers which are inactive on this preparation. Similarly, incubation of homogenates of trachea with LTA4 led to the formation of LTB4; this finding is again in agreement with the potency of these two leukotrienes on the trachea. Our results suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its transformation.  相似文献   

3.
Leukotriene (LT) synthesis and metabolism were studied in porcine aortic endothelial cells. Leukotrienes were identified by combinations of guinea pig lung parenchymal strip bioassay, radioimmunoassay, and UV spectrophotometry with high performance liquid chromatography. Endothelial cells stimulated with the calcium ionophore, A23187, were unable to convert arachidonic acid to detectable levels of LTA4-derived products including the biologically active metabolites, LTB4 or LTC4. However, these cells readily converted exogenous LTA4 to the potent slow-reacting substance, LTC4. Smaller quantities of 11-trans-LTC4 and LTD4 were also observed. LTB4 was not detectable in these incubations nor was LTB4 metabolism observed. The possible intercellular transfer of LTA4 between polymorphonuclear leukocytes (PMNL) and endothelial cells was tested since PMNL release LTA4 when stimulated and have significant contact with endothelium. When A23187-stimulated neutrophils were coincubated with endothelial cells, a significant increase in LTC4 levels was detected over PMNL alone. LTC4 is formed by the enzymatic conjugation of glutathione (GSH) with LTA4. Therefore in some experiments, endothelial cells were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]GSH. When unlabeled PMNL were added, as a source of LTA4 to the prelabeled endothelial cells, substantial levels of [35S] LTC4 were recovered. The data indicate that endothelial cells synthesize LTC4 from LTA4. They also demonstrate a specific PMNL-endothelial cell interaction in which endothelial cell LTC4 synthesis results from the intercellular transfer of LTA4 produced by PMNL.  相似文献   

4.
Tumour necrosis factor α (TNF-α) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelialcells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-α-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colon-stimulating factor (GM-CSF) from TNF-α-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-α-induced responses to those observed with endothelial cells of foetal origin. Additionaly, we report here that TNF-α and interferon γ (IFN-γ) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-α-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-γ plus TNF-α was markedly decreased when compared to the response by TNF-α alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

5.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   

6.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

7.
Leukotriene A4 hydrolase activity of human airway epithelial cells   总被引:2,自引:0,他引:2  
Human tracheal epithelial cells were incubated with LTA4 and metabolic products were identified in extracted supernatants by high pressure liquid chromatography, ultraviolet spectroscopy, and gas chromatography-mass spectrometry. In the presence of epithelial cells, LTA4 was converted to LTB4, but not to LTC4 or LTD4. Maximum LTB4 was released at an LTA4 concentration of 3 microM and had occurred by 30 min. LTB4 release was increased in the presence of albumin, but was not affected by extracellular calcium or A23187. This LTA4 hydrolase activity had a slower time course and could not be clearly inactivated by repeated exposure to substrate as is the case for previously described LTA4 hydrolase enzymes. This hydrolase appears to have novel biochemical characteristics.  相似文献   

8.
Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory β1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm–10 μm to either leaflet of cell-free membranes at a wide range of [Ca2+]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca2+]i and voltages favoring this activation. Homomeric cbv1 or cbv1-β2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK β1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate β1 subunit-containing channels when β1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK β1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of β1-specific BK channel activators.  相似文献   

9.
Leukotriene (LT) A4 metabolism was studied in human platelets and endothelial cells, since both cells could be involved in transcellular formation of LTC4. Upon addition of exogenous LTA4, both cells produced LTC4 as a major metabolite at various incubation times, and no LTB4, LTD4, or LTE4 was detected. Kinetic studies revealed a higher apparent Km for LTA4 in endothelial cells as compared to platelets (5.8 microM for human umbilical vein endothelial cells (HUVEC) versus 1.3 microM for platelets); platelets were more efficient in this reaction with a higher Vmax (174 pmol/mg protein/min) versus 15 pmol/mg protein/min in HUVEC. The formation of LTC4 and corresponding kinetic parameters were not modified when platelets or endothelial cells were stimulated by thrombin prior to or simultaneously with the addition of LTA4. In both cells LTC4 synthase activity was not modified by repeated addition of LTA4 showing that it is not a suicide-inactivated enzyme. Furthermore, in platelets and endothelial cells, the enzyme activity was localized in the membrane fraction and was distinct from cytosolic glutathione-S-transferases. Platelet membrane fractions showed apparent Km values of 31 microM and 1.2 mM for LTA4 and GSH, respectively. Inhibition of LTC4 formation from platelets and endothelial cells preparations by S-substituted glutathione derivatives was correlated to the length of the S-alkyl chain. The same substances inhibited cytosolic glutathione-S-transferases with significantly lower IC50, confirming the distinct nature of the two enzymes. These results show that platelets and HUVEC possess similar enzymes for the production of LTC4 from LTA4; however, platelets seem to have a higher efficiency than HUVEC in performing this reaction.  相似文献   

10.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

11.
Bestatin, an inhibitor of aminopeptidases, was also a potent inhibitor of leukotriene (LT) A4 hydrolase. On isolated enzyme its effects were immediate and reversible with a Ki = 201 +/- 95 mM. With erythrocytes it inhibited LTB4 formation greater than 90% within 10 min; with neutrophils it inhibited LTB4 formation by only 10% during the same period, increasing to 40% in 2 h. Bestatin inhibited LTA4 hydrolase selectively; neither 5-lipoxygenase nor 15-lipoxygenase activity in neutrophil lysates was affected. Purified LTA4 hydrolase exhibited an intrinsic aminopeptidase activity, hydrolyzing L-lysine-p-nitroanilide and L-leucine-beta-naphthylamide with apparent Km = 156 microM and 70 microM and Vmax = 50 and 215 nmol/min/mg, respectively. Both LTA4 and bestatin suppressed the intrinsic aminopeptidase activity of LTA4 hydrolase with apparent Ki values of 5.3 microM and 172 nM, respectively. Other metallohydrolase inhibitors tested did not reduce LTA4 hydrolase/aminopeptidase activity, with one exception; captopril, an inhibitor of angiotensin-converting enzyme, was as effective as bestatin. The results demonstrate a functional resemblance between LTA4 hydrolase and certain metallohydrolases, consistent with a molecular resemblance at their putative Zn2(+)-binding sites. The availability of a reversible, chemically stable inhibitor of LTA4 hydrolase may facilitate investigations on the role of LTB4 in inflammation, particularly the process termed transcellular biosynthesis.  相似文献   

12.
J F Evans  S Kargman 《FEBS letters》1992,297(1-2):139-142
The covalent coupling of [3H]LTA4 to human leukocyte LTA4 hydrolase is inhibited in a concentration-dependent fashion by pre-incubation with bestatin. This inhibition correlated with the concentration-dependent inhibition by bestatin of LTB4 and LTB5 synthesis by LTA4 hydrolase. Epibestatin, a diastereomer of bestatin, neither inhibited LTB4 or LTB5 production by LTA4 hydrolase nor prevented the covalent coupling of [3H]LTA4 to the enzyme. In contrast, captopril inhibited both LTB4 synthesis by LTA4 hydrolase and covalent coupling of [3H]LTA4 to the enzyme.  相似文献   

13.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

14.
Interferon-gamma (IFN-γ) is a glycoprotein generated by lymphocytes that possesses anti-tumor, antiviral and immunomodulatory functions. IFN-γ assays are broadly employed in immunological research and clinical diagnostic tests. Intracellular IFN-γ staining, in particular, is an important immune assay that allows simultaneous determination of cellular phenotype and antigen-specific T cell response. Aptamers have great potential for molecule detection and can bind to target molecules with high affinity and specificity. In this study, a novel 59-mer DNA aptamer (B1–4) was developed for assay of intracellular IFN-γ. The selected aptamer bound to IFN-γ with a Kd of 74.5 nM, with minimal cross-reactivity to albumin. The aptamer was also found capable of binding with paraformaldehyde-fixed IFN-γ. Moreover, B1–4 could enter permeated and paraformaldehyde-fixed lymphocytes, and bound to intracellular IFN-γ produced by these cells. When FITC-labeled B1–4 was used to stain a group of lymphocytes, the average fluorescence of the cells was positively correlated with the number of PMA-stimulated lymphocytes within the group. A standard curve could thus be established for assessing the fraction of IFN-γ-producing cells in a cluster of lymphocytes. The selected aptamer hence provides a novel approach for assaying intracellular IFN-γ generated by a group of lymphocytes, and may have application potential in both scientific research and clinical laboratory test.  相似文献   

15.
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.  相似文献   

16.
17.
Effects of recombinant murine interferon-γ (rIFN-γ) on the membrane adenylate cyclase of a murine macrophage cell line (P388D1) were investigated in order to explore the nature of a signal transmitted by IFN-γ receptor. Following the incubation of P388D1 cells with 40 U/ml of rIFN-γ, the intracellular level of cAMP gradually increased about twofold over the control level within 60 min, and then began to gradually decline to about half the control level by 24 h incubation. The initial rise in cAMP level appeared to be due to the modest activation of adenylate cyclase and not due to the inhibition of cAMP-phosphodiesterase. Later decrease of intracellular cAMP may be due to quantitative down-regulation of the adenylate cyclase system. The basal enzymatic activity of the membrane prepared from P388D1 cells exposed to IFN-γ for 24 h was found to be reduced to about 20% of that of the control membrane. However, the quality of the adenylate cyclase system appeared unchanged, because the relative degree of the response of the down-regulated membrane adenylate cyclase to prostaglandin PGE2, NaF, guanylimidodiphosphate (GppNHp), cholera toxin (CT), or forskolin was found to remain unchanged. This quantitative down-regulation of adenylate cyclase must be due to the action of rIFN-γ, since the prior treatment of rIFN-γ with either acid (pH 2) or monoclonal anti-IFN-γ antibody inhibited the ability of IFN-γ to induce the down-regulation. The rIFN-γ-induced down-regulation is a reversible process, since the adenylate cyclase activity of the membrane was found to be restored when the rIFN-γ-exposed cells were cultured for 72 h in the absence of rIFN-γ. In addition, the 48 h-incubation of P388D1 cells with rIFN-β or IFN-α was found not to significantly affect the membrane adenylate cyclase system.  相似文献   

18.
Leukotriene B4 (LTB4) induces a number of functional changes in human neutrophils, including both superoxide release and CD11b/CD18 (Mo1)-mediated adherence to various substrates, such as keyhole limpet hemocyanin (KLH). These effects are both time- and concentration-dependent. Neutrophil adhesion was at least 10-fold more sensitive to the stimulatory action of LTB4 than superoxide production. Two LTB4 receptor antagonists, LY255283 (1-(5-ethyl-2-hydroxy-4-(6-methyl-6-(1H-tetrazol-5-yl)heptyloxy )- phenyl)ethanone) and the sodium salt of SC-41930 (7-[3-(4-acetyl-3-methoxy-2-propylphenoxy)-propoxy]-3,4-dihydro-8- propyl-2H- 1-benzopyran-2-carboxylic acid) were evaluated for effects on human neutrophil superoxide production and adhesion. Despite being more sensitive to LTB4-induced stimulation, neutrophil adhesion was at least 100-fold less sensitive to inhibition by LY255283 and SC-41930 than superoxide production. Both LTB4 receptor antagonists behaved similarly in these models. These compounds did not inhibit neutrophil responses induced by granulocyte/macrophage colony-stimulating factor (GM-CSF).  相似文献   

19.
Intramammary infusion of the antigen used to sensitize cows by the systemic route induces a local inflammation associated with neutrophil recruitment. We hypothesize that this form of delayed type hypersensitivity, which may occur naturally during infections or could be induced intentionally by vaccination, can impact the outcome of mammary gland infections. We immunized cows with ovalbumin to identify immunological correlates of antigen-specific mammary inflammation. Intraluminal injection of ovalbumin induced a mastitis characterized by a prompt tissue reaction (increase in teat wall thickness) and an intense influx of leukocytes into milk of 10 responder cows out of 14 immunized animals. The magnitude of the local inflammatory reaction, assessed through milk leukocytosis, correlated with antibody titers, skin thickness test, and production of IL-17A and IFN-γ in a whole-blood antigen stimulation assay (WBA). The production of these two cytokines significantly correlated with the magnitude of the milk leukocytosis following the ovalbumin intramammary challenge. The IL-17A and IFN-γ production in the WBA was dependent on the presence of CD4+ cells in blood samples. In vitro stimulation of peripheral blood lymphocytes with ovalbumin followed by stimulation with PMA/ionomycin allowed the identification by flow cytometry of CD4+ T cells producing either IL-17A, IFN-γ, or both cytokines. The results indicate that the antigen-specific WBA, and specifically IL-17A and IFN-γ production by circulating CD4+ cells, can be used as a predictor of mammary hypersensitivity to protein antigens. This prompts further studies aiming at determining how Th17 and/or Th1 lymphocytes modulate the immune response of the mammary gland to infection.  相似文献   

20.
The effect of leukotrienes derivated from arachidonic acid was studied on vascular endothelium proliferation. The peptido-leukotriene (LTC4 (0.1 nM – 0.1 μM) promoted a dose-dependent growth of bovine aortic endothelial cells in culture with a maximal effect at 10 nM. This proliferative activity could be receptor-mediated since LTC4 specifically bound to endothelial cell membranes with a Kd value of 50 nM. The leukotriene B4 did not induce any significant proliferation in the same range of concentrations. This result was consistent with the lack of LTB4 specific binding sites. This data suggests that LTC4 could be one of the factors implicated in angiogenesis during inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号