首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by 31P NMR. 31P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are 0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. We also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by 31P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B. cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. We propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.  相似文献   

2.
The COOH terminus of the externally disposed variant surface glycoprotein (VSG) of the eukaryotic pathogenic protozoan Trypanosoma brucei strain 427 variant MITat 1.4 (117) is covalently linked to a novel phosphatidylinositol-containing glycolipid. This conclusion is supported by analysis of the products of nitrous acid deamination or Staphylococcus aureus phosphatidylinositol-specific phospholipase C treatment of purified membrane-form VSG. Lysis of trypanosomes is accompanied by release of soluble VSG, catalyzed by activation of an endogenous phospholipase C. The only apparent difference between membrane-form VSG and soluble VSG is the removal of sn-1,2-dimyristylglycerol. The COOH-terminal glycopeptide derived by Pronase digestion of soluble VSG was characterized by chemical modification and digestion with alkaline phosphatase. The results are consistent with the single non-N-acetylated glucosamine residue being the reducing terminus of the oligosaccharide and in a glycosidic linkage to a myo-inositol monophosphate that is probably myo-inositol 1,2-cyclic monophosphate. A partial structure for the VSG COOH-terminal moiety is presented. This structure represents a new type of eukaryotic post-translational protein modification and membrane anchor. We discuss the relevance of this structure to observations that have been made with other eukaryotic membrane proteins.  相似文献   

3.
In this paper we examine the effect of the vasodilator peptide bradykinin on endothelial cell regulation of phosphoinositide (PI) turnover. The data show that the activation of PI turnover by bradykinin in bovine pulmonary artery endothelial cells is insensitive to pertussis toxin, which ADP ribosylates a membrane protein of mol wt 40,000. However, this effect of bradykinin can be potentiated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S), an activator of G proteins, and depressed by guanosine 5'-O-(2-thio)diphosphate (GDP beta S), an inhibitor of G proteins. After endothelial cells were preincubated for 1 h with GTP gamma S, there was a three- to fourfold increase in PI turnover. Preincubation of cells with GDP beta S did not affect the basal level of PI turnover, but completely prevented activation of PI turnover by bradykinin. 4 beta-Phorbol-12 beta-myristate-13 alpha-acetate can block the bradykinin-stimulated inositol monophosphate formation in cultured endothelial cells. The effects of bradykinin on PI turnover were blocked by B2 antagonists but not by B1 antagonists. Taken together, these results indicate that in endothelial cells the bradykinin B2 receptor is coupled to phospholipase C via a G protein (or proteins) that is not a substrate for pertussis toxin (neither Gi nor Go).  相似文献   

4.
The identification of free glycoinositol phospholipids (GPIs) following biosynthetic labeling with [3H]glucosamine in cultured cells has been reported by several laboratories. We applied this procedure to two of the cell types used in these studies, H4IIE hepatoma cells and isolated hepatocytes, but were unable to detect a [3H]glucosamine-containing lipid that met any of the criteria for GPIs, including sensitivity to phosphatidylinositol-specific phospholipase C (PIPLC) or GPI-specific phospholipase D. Part of the difficulty in radiolabeling a GPI by this procedure was the rapid metabolic conversion of [3H]glucosamine to galactosamine and neutral or anionic derivatives. A PIPLC-sensitive radiolabeled lipid was detected only after 16 h of labeling. The water-soluble fragments released from this lipid by PIPLC corresponded largely to myo-inositol 1,2-cyclic phosphate and myo-inositol 1-phosphate, products expected from PIPLC cleavage of phosphatidylinositol or lyso-phosphatidylinositol. In an alternative approach that we introduce here, free GPIs in lipid extracts from rat liver plasma membranes were labeled by reductive radiomethylation. This procedure, which radiomethylates primary and secondary amines, has been shown to label a glucosamine residue adjacent to inositol in all GPIs characterized to date. The labeled extracts were fractionated by two-dimensional thin-layer chromatography, and a cluster of polar labeled lipids were assigned as GPIs based upon the following observations. 1) They were cleaved by PIPLC, 2) after hydrolysis in 6 N HCl, both radiomethylated glucosamine and a glucosamine-inositol conjugate were identified by cation exchange chromatography, and 3) hydrolysis in 4 M trifluoroacetic acid generated a fragment consistent with glucosamine-inositol-phosphate. These results illustrate new criteria for the identification of GPIs. The labeled GPIs also contained radiomethylated ethanolamine, another component found in GPI anchors of proteins and in mature lipid precursors of GPI anchors, suggesting that the liver plasma membrane GPIs retained considerable structural homology to GPI anchors.  相似文献   

5.
Syntheses of a metabolite of the second messenger myo-inositol 1,4,5-trisphosphate, myo-inositol 1,4-bisphosphate, and an analogue, the 1,4-bisphosphorothioate, are reported, by using phosphite chemistry on (+/-)-1,2:4,5-di-isopropylidene-myo-inositol. The synthesis of (+/-)-1,2:4,5-di-isopropylidene 3,6-bis[di-(2-cyanoethyl)]phosphite provides an intermediate that can be oxidized to either the corresponding bisphosphate or bisphosphorothioate. myo-Inositol phosphorothioates are proposed as novel analogues of myo-inositol phosphates; their resistance to phosphatase-catalysed breakdown is reported.  相似文献   

6.
R. J. A. Connett  D. E. Hanke 《Planta》1986,169(2):216-221
We have investigated the breakdown of membrane-bound phosphatidylinositol (PI) in homogenates of soybean (Glycine max) callus. The breakdown of PI was stimulated by the detergent deoxycholate. At pH 7.0 and 1·gl-1 of deoxycholate the loss of PI was rapid and extensive: more than 80% was broken down within 10 min. The breakdown of PI was also stimulated by millimolar concentrations of Ca2+. The products of breakdown of added PI (purified from soybean callus) in this system were identified from their chromatographic mobilities as 1,2-diacylglycerol, myo-inositol 1-phosphate and myo-inositol 1:2-cyclic monophosphate.Abbreviations DOC deoxycholate - EDTA ethylenedi-aminetetraacetic acid,-acetate - Pi Inorganic phosphate - PI phosphatidylinositol - PS phosphatidylserine - TLC thinlayer chromatography  相似文献   

7.
NA and Ca9-22 cells derived from squamous cell carcinomas of the tongue possess a large number of epidermal growth factor (EGF) receptors (2.0 X 10(6) and 1.3 X 10(6) receptors/cell, respectively). In these cell lines, EGF stimulated receptor autophosphorylation and phosphatidylinositol (PI) turnover. Furthermore, EGF enhanced the phosphorylation of an acidic protein of Mr 80,000. Phosphorylation of this protein was also stimulated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a phorbol ester tumor promoter, and was mainly at serine residues. Phosphopeptide mapping using protease V8 or trypsin indicated that Mr 80,000 proteins isolated from the EGF- and TPA-treated cells were identical. The Mr 80,000 protein was present mainly in the cytosol, but it became closely associated with the membrane as a phosphorylated form upon EGF or TPA stimulation. These results suggest that the EGF-stimulated phosphorylation of the Mr 80,000 acidic phosphoprotein in EGF receptor-hyperproducing tumor cells is mediated through the activation of PI turnover and protein kinase C.  相似文献   

8.
Phospholipid metabolism in rat mast cells activated by antigen was examined with reference to phosphatidylinositol (PI) turnover. Upon antigen stimulation, histamine release from passively sensitized mast cells with IgE was potentiated by adding phosphatidylserine (PS). The addition of antigen to [3H]glycerol-prelabeled and sensitized mast cells induced a marked loss of radioactivity of PI and a concurrent accumulation of 1,2-diacylglycerol (DG) and phosphatidic acid (PA) within 5 to 60 sec. Furthermore, this antigen-induced PI breakdown was enhanced in the presence of Mg2+. Histamine release occurred in parallel with PI breakdown. On the other hand, the transient Ca2+ influx into mast cells, as measured by uptake of 45Ca2+, was found to occur quickly after cells were activated by antigen, which was concerted with PI breakdown. These results suggest that enhanced PI turnover may be an important step in the biochemical sequence of events leading to release of histamine, and that not only Ca2+ but also Mg2+ appears to take a part in stimulus-response coupling in rat mast cells.  相似文献   

9.
Octopamine was found to decrease extrajunctional, but not junctional glutamate responses, in mealworm neuromuscular preparations. This action of octopamine was mimicked by forskolin, 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (CPT-cyclic AMP), and 8-bromoguanosine 3′:5′-cyclic monophosphate (8-bromo-cyclic GMP), but not by 1,2-oleoylacetylglycerol (OAG), a protein kinase C activator. We suggest that the octopamine-induced reduction in the glutamate sensitivity of extrajunctional membranes may enable the muscle to more closely follow its neuronal input by preventing a depolarization (and hence a conductance increase) due to the discharge of unsequestered transmitter molecules at nonsynaptic sites.  相似文献   

10.
Hexachlorocyclohexanes (HCCH) are chlorinated analogs of inositol; the alpha, beta, gamma, and delta isomers of HCCH have the stereochemical configurations of (+/-)-, scyllo-, muco-, and myo-inositol, respectively. To assess their potential as specific tools for the study of agonist-stimulated phosphoinositide metabolism, we examined the effects of these four HCCH isomers on phosphatidylinositol (PI) synthase (CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase), PI:inositol exchange enzyme, and several membrane-associated enzymes unrelated to inositol metabolism. In pancreas microsomes, in the presence of saturating myo-inositol, the alpha, beta, gamma, and delta isomers (4 mM) inhibited PI synthase activity by 9, 4, 22, and 69%, respectively. Half-maximal inhibition by delta-HCCH occurred at 0.25 mM. A similar pattern of HCCH inhibition was obtained using n-octylglucopyranoside-solubilized and partially purified PI synthase preparations. The inhibition by delta-HCCH was noncompetitive versus myo-inositol. The PI:inositol exchange enzyme in mouse pancreas microsomes was inhibited 90% by 1 mM delta-HCCH in the presence of 0.25% Triton X-100, but not in its absence; half-maximal inhibition occurred with 0.5 mM delta-HCCH. delta-HCCH (4 mM) also inhibited to varying extents the following enzymes: pancreas CDP-choline:1,2-diacyl-sn-glycerol cholinephosphotransferase (75%), brain and erythrocyte (Na+,K+)-ATPase (87 and 70%), brain and erythrocyte Mg2+-ATPase (38 and -5%), brain 1,2-diacyl-sn-glycerol kinase (22%), and liver glucose 6-phosphatase (16%). gamma-HCCH (4 mM) inhibited these enzymes to a lesser extent, or not at all. The order of inhibition by HCCH stereoisomers was the same as the order of their saturation level in phospholipid vesicles (delta greater than gamma greater than alpha greater than beta). This suggests that the inhibitory action is due to insertion of the compounds either into hydrophobic domains of the enzymes or into annular lipid. The results indicate that the HCCHs are not selective inhibitors of inositol metabolism.  相似文献   

11.
Certain 6-acylaminopurines have been shown to exhibit activity in several cytokinin bioassays. The active compunds included 6-N,2′-O-dibutyryladenosine 3’:5′-cyclic monophosphate, but adenosine 3′:5′-cyclic monophosphate was inactive. The metabolites formed from [2,8-3H] 6-benzoylaminopurine by radish seedlings and excised radish cotyledons were investigated. When compared with zeatin, this amide showed considerable stability in vivo. Conversion to 6-benzylaminopurine and its riboside was not detected but slight degradation to adenine was indicated. The principal metabolite was an unidentified compund.  相似文献   

12.
We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50–101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN−/− cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN−/− MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110β function in the absence of PTEN.  相似文献   

13.
We have studied the role of phosphatidylinositol 3-kinases (PI 3-kinases) in the regulation of the actin cytoskeleton in MTLn3 rat adenocarcinoma cells. Stimulation of MTLn3 cells with epidermal growth factor (EGF) induced a rapid increase in actin polymerization, with production of lamellipodia within 3 min. EGF-stimulated lamellipodia were blocked by 100 nM wortmannin, suggesting the involvement of a class Ia PI 3-kinase. MTLn3 cells contain equal amounts of p110alpha and p110beta, and do not contain p110delta. Injection of specific inhibitory antibodies to p110alpha induced cell rounding and blocked EGF-stimulated lamellipod extension, whereas control or anti-p110beta antibodies had no effect. In contrast, both antibodies inhibited EGF-stimulated DNA synthesis. An in situ assay for actin nucleation showed that EGF-stimulated formation of new barbed ends was blocked by injection of anti-p110alpha antibodies. In summary, the p110alpha isoform of PI 3-kinase is specifically required for EGF-stimulated actin nucleation during lamellipod extension in breast cancer cells.  相似文献   

14.
Summary In monolayer cultures of mouse adrenal cortex tumor cells, high concentrations of 3′,5′-cyclic adenosine monophosphate and 3′,5′-cyclic cytidine monophosphate (1.0 to 10.0mm produce steroidogenic responses equivalent to maximally stimulating levels of adrenocorticotropin. 3′,5′-Cyclic guanosine monophosphate and other cyclic nucleotides are not steroidogenic. Although the steroidogenic action of adrenocorticotropin is accompanied by an increased rate of glycolytic activity, the cyclic nucleotides stimulate steroidogenesis without increasing glycolysis. The data suggest that adrenocorticotropin can effect certain alterations in adrenal metabolism by a mechanism which does not involve the adenyl cyclase system. Supported by grants from the American Cancer Society (P-395) and the National Institutes of Health (R01-AM09901). Presented in part at the 1969 Laurentian Hormone Conference, Mt. Tremblant, Quebec, Canada, August 28, 1969.  相似文献   

15.
INCREASED levels of cyclic AMP have been found in normal cells as compared with malignant cells1,2. Several types of malignant cells become morphologically similar to untransformed cells when incubated in media containing cyclic AMP or its derivative dibutyryl adenosine 3′:5′-cyclic monophosphate (dibutyryl cyclic AMP)3,4. Sheppard reported that 3T3 mouse fibroblasts, transformed by polyoma virus, grew to low saturation density and became less agglutinable with wheat germ agglutinin if theophylline and dibutyryl cyclic AMP were added to the medium5.  相似文献   

16.
The ability of staurosporine, a potent inhibitor of protein kinase C, to block certain cellular events initiated by 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) was examined. Treatment of MDA468 breast cancer cells with TPA decreases EGF binding to the cell surface and this effect is blocked by pretreatment with staurosporine with an IC50 of 30 nM. Either 10(-9) M EGF or 100 ng/ml TPA stimulated the accumulation of both EGF receptor and TGF-alpha mRNA and staurosporine (50 nM) completely abolished these mRNA accumulations. Staurosporine did not block EGF-stimulated tyrosine phosphorylation of its receptor as measured by immunoblotting with anti-phosphotyrosine antibodies. The ability of staurosporine to block the mRNA responses of either EGF or TPA suggests that these two agents have common signaling pathways and it implies a role for protein kinase C in the control of EGF receptor and TGF-alpha expression.  相似文献   

17.
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.  相似文献   

18.
Mn2+ greatly increases the incorporation of myo-[3H]inositol into phosphatidylinositol (PI) of brain and other tissues by stimulating the activity of a PI-myo-inositol exchange enzyme. This study examined the ability of norepinephrine (NE) and carbachol to stimulate the hydrolysis of [3H]PI formed in the absence and presence of Mn2+-stimulated [3H]inositol exchange. Rat cerebral cortical slices were incubated with myo-[3H]inositol for 60 min in an N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) buffer without or with MnCl2 (1 mM). The tissue was washed and further incubated with unlabeled myo-inositol and LiCl (10 mM). Prelabeled slices were then incubated with NE (0.1 mM) or carbachol (1 mM) to induce agonist-stimulated [3H]PI hydrolysis. Mn2+ treatment resulted in eight- and sixfold increases in control levels of [3H]PI and [3H]inositol monophosphate [( 3H]IP), respectively. Both NE and carbachol stimulated [3H]IP formation in tissue prelabeled without or with manganese. However, the degree of stimulation (percentage of control values) was greatly attenuated in the presence of Mn2+. In the absence of Mn2+ treatment, NE decreased [3H]PI radioactivity in the tissue to 80% of control values. However, NE did not decrease [3H]PI radioactivity in the Mn2+-treated tissue. These data demonstrate that Mn2+ stimulates incorporation of myo-[3H]inositol into a pool of PI in brain that has a rapid turnover but is not coupled to agonist-induced hydrolysis.  相似文献   

19.
The effects of chick brain–spinal cord extract on morphological development and cyclic nucleotide levels of cultured chick embryo skeletal muscle cells were determined. It had previously been shown that the extract stimulated morphological differentation, protein synthesis, and cholinesterase activity of muscle cells. Myoblasts fused earlier and an increase in number as well as diameter of myotubes were seen in the extract treated cultures. Cyclic nucleotides levels were higher (almost twice the controls for both adenosine 3′, 5′ -cyclic monophosphate and guanosine 3′, 5′ -cyclic monophosphate) and preceded their occurence in the control cultures. It was suggested that factor(s) in the extract interact with membrane receptor(s) to alter nucleotide levels which, in turn, allow the effects to be expressed.  相似文献   

20.
Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of beta-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a beta-1,2-mannose acid-labile moiety, but only serotype A strains contain additional beta-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4delta-deficient derivative has no detectable phosphate-linked beta-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4delta mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号