首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined the conversion of intermediates of DNA replication in normal human skin fibroblasts and fibroblasts isolated from patients with genetic diseases caused by putative DNA repair defects. Experiments were performed in non-transformed, unchallenged cells using alkaline sucrose sedimentation analysis to demonstrate precursor low molecular weight (LMW) DNA molecules which converted into high molecular weight (HMW) DNA with time. Analyses of conversion of replicative intermediates were conducted in cells from patients with ataxia telangiectasia (AT), Fanconi anemia (FA), Bloom syndrome (BS), Cockayne syndrome (CS) and xeroderma pigmentosum (XP). Our studies show that conversion of replicative intermediates occurs in all cell strains examined. However, XP cells (complementation groups A and E) show evidence of abnormalities in the conversion of LMW replicative intermediates, with the most dramatic alterations shown by cells from complementation group A.  相似文献   

2.
The basal levels of superoxide dismutase (SOD) activity and chromosome aberration (CA) and sister-chromatid exchange (SCE) frequencies were examined in cultured fibroblasts or Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs). These cells were derived from patients with chromosome instability syndromes (CISs) including Bloom's syndrome (BS), Fanconi's anemia (FA) and ataxia telangiectasia (AT). Embryonal fibroblasts and LCLs from normal subjects served as controls. Although LCLs tended to exhibit a higher SOD level than fibroblasts due to an elevation of Cu/Zn-SOD activity, BS and FA fibroblasts with increased frequencies of CAs and/or SCEs showed abnormally elevated SOD activity due to the manifold increase of Mn-SOD levels compared with control cells. However, BS and AT LCLs with almost control levels of CA and SCE frequencies showed no, or a slightly elevated, SOD activity, suggesting a possible selection of such cells during EBV transformation. The observed parallelism between the SOD activity and the cytogenetic manifestation may imply an involvement of active oxygen species, especially superoxide radicals, in the increased chromosome damage of CIS cells.  相似文献   

3.
The ability of human fibroblasts to repair bleomycin-damaged DNA was examined in vivo. Repair of the specific lesions caused by bleomycin (BLM) was investigated in normal cell strains as well as those isolated from patients with apparent DNA repair defects. The diseases ataxia telangiectasia (AT), Bloom syndrome (BS), Cockayne syndrome (CS), Fanconi anemia (FA), and xeroderma pigmentosum (XP) were those selected for study. The method used for studying the repair of DNA after BLM exposure was alkaline sucrose gradient centrifugation. After exposure to BLM, a fall in the molecular weight of DNA was observed, and after drug removal the DNA reformed rapidly to high molecular weight. The fall in molecular weight upon exposure to BLM was observed in all cells examined with the exception of some XP strains. Prelabeled cells from some XP complementation groups were found to have a higher percentage of low molecular weight DNA on alkaline gradients than did normal cells. This prelabeled low molecular weight DNA disappeared upon exposure to BLM.  相似文献   

4.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

5.
The aim of this study was to test the hypothesis that pulmonary inflammation and emphysema induced by cadmium (Cd) inhalation are associated with pulmonary oxidative stress. Two groups of Sprague Dawley rats were used: one vehicle-exposed group undergoing inhalation of NaCl (0.9%, n = 24) and one Cd-exposed group undergoing inhalation of CdCl(2) (0.1%, n = 24). The animals in the vehicle-and Cd-exposed groups were divided into 4 subgroups (n = 6 per group), which underwent either a single exposure (D2) of 1H or repeated exposures 3 times/week for 1H for a period of 3 weeks (3W), 5 weeks (5W) or 5 weeks followed by 2 weeks without exposure (5W + 2). At sacrifice, the left lung was fixed for histomorphometric analysis (median inter-wall distance, MIWD), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. Cytological analysis of BALF was performed and BALF was analysed for oxidant markers 8-iso-PGF(2a), uric acid (UA), reduced (AA) and oxidised ascorbic acid (DHA) and reduced (GSH) and oxidised glutathione (GSSG). Cd-exposure induced a significant increase of BALF macrophages and neutrophils. 8-iso-PGF(2a), UA, GSH and GSSG were significantly increased at D2. At 5W and 5W + 2, AA and GSH were significantly lower in Cd-exposed rats, indicating antioxidant depletion. MIWD significantly increased in all repeatedly Cd-exposed groups, suggesting development of pulmonary emphysema. 8-iso-PGF(2a) and UA were positively correlated with macrophage and neutrophil counts. GSH, GSSG and 8-iso-PGF(2a) were negatively correlated with MIWD, indicating that Cd-induced emphysema could be associated with pulmonary oxidative stress.  相似文献   

6.
In attempts to transform and immortalize human cell cultures, skin fibroblasts from normal donors of different ages, from patients with the premature ageing diseases Werner's syndrome (WS) and progeria (PR), and from donors with the cancer-prone diseases ataxia telangiectasia (AT), Bloom's syndrome (BS) and Fanconi's anaemia (FA), were infected with SV40 virus and their growth monitored thereafter. Lesch-Nyhan (LN) fibroblasts were also infected. SV40-infected cultures from two normal and from WS, AT and LN donors attained a spectrum of transformed properties, high mitotic activity at confluence, presence of T-antigen, anchorage independence and altered morphology. Most of these pretransformed cultures died in the crisis period. However, two cultures from the WS and LN patients survived the crisis period and have now been grown to more than 200 passages. For the LN culture the crisis period was at least 200 days. Both permanent lines retain the properties of pretransformed cells, but differ in their modal chromosome number and ability to grow in methionine-free medium. It can be concluded from these experiments that transformation by SV40 to permanent lines is a rare event in human skin fibroblasts, even when these cells were taken from patients predisposed to form cancers.  相似文献   

7.
Obese subjects with the metabolic syndrome (MS+) are more prone to microvascular complications than obese subjects without the metabolic syndrome (MS?). Excessive vascular nitric oxide (NO) production has been demonstrated in MS+ compared to MS?, perhaps driven by increased inflammation or oxidative stress. We tested whether in MS+, folic acid (FA) treatment could normalize NO synthase (NOS)‐dependence of vascular tone in the retina and kidney. MS+ (n = 49) and MS? (n = 26) subjects were included in a randomized, double‐blind, crossover trial. After 4‐weeks' treatment with placebo or FA (5 mg/day), several cytokines (C‐reactive protein (CRP), interleukin‐1β, adiponectin), and markers of oxidative stress (glutathione/oxidized glutathione (GSH/GSSG) ratio, total antioxidant capacity (TAC)) were determined. NOS‐dependence of retinal and renal vascular tone was assessed by retinal scanning laser Doppler flowmetry and renal clearance technique, respectively. FA had no effect on cytokine levels, but increased GSH/GSSG ratio overall (36 ± 76 vs. 102 ± 200, P = 0.04), indicative of a reduction in oxidative stress. In MS+, treatment with FA reduced NOS‐dependence of retinal and renal vascular tone compared to placebo (P = 0.03 and P = 0.04, respectively). FA had no effect in MS?. After treatment with FA, NOS‐dependence of retinal and renal vascular tone was similar between MS+ and MS?. Retinal and renal vascular tone in MS+ subjects is characterized by increased dependence on NOS. NOS‐dependence in MS+ could be corrected by FA treatment to levels not dissimilar in MS?, and this was associated with a reduction in oxidative stress. Future trials should test whether these effects translate into a reduction of microvascular complications.  相似文献   

8.
Genetically determined chromosome instability syndromes   总被引:2,自引:0,他引:2  
Spontaneously increased chromosomal instability is well documented in the three autosomal recessive diseases, Fanconi's anemia (FA), Bloom's syndrome (BS), and ataxia telangiectasia (AT). Other conditions have been reported to be associated with chromosomal breakage. Some are still single observations: in Werner's syndrome only fibroblasts are affected, and systemic sclerosis may not be an inherited disease. Various aspects of FA, BS, and AT are discussed which have emerged since recent reviews have been published. The differential diagnosis in FA has become more important than it was in the past. Proven heterogeneity in FA demands definition of what to name FA and FA variants. The analysis of cancer frequencies and types in FA and AT lacks important clues. This should stimulate all of us to mutual exchange of data and creation of registries not only of patients and follow-ups, but also of characterized cell strains. A synopsis of results from cell and cytogenetic studies demonstrates similarities and differences in detail of the general phenomenon of chromosomal instability which FA, BS, and AT share. Results from biochemical studies at the DNA level together with cytogenetic findings indicate different but still undefined failures in DNA metabolism or DNA repair mechanisms due to the different genes. A new approach to analyzing the impairment of DNA repair in FA is briefly described. DNA related enzymes are produced in the cytoplasm and have to be transported to the nucleus. The subcellular distribution of topoisomerase activity was found to be unusual in three placentas of FA patients. Other DNA enzymes were distributed normally. Thus, a specific mechanism for movement of the enzyme through the nuclear membrane seems to be defective.  相似文献   

9.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

10.
Patients with Down's syndrome (DS) show elevated levels of copper, zinc-containing superoxide dismutase (SOD1) and appear to have increased lipid peroxidation and oxidative damage to DNA as well as elevated glutathione peroxidase activity. Increasing SOD1 levels by gene transfection in NT-2 and SK-N-MC cell lines also led to a rise in glutathione peroxidase activity, but this was nevertheless accompanied by decreased proliferation rates, increased lipid peroxidation and protein carbonyls, and a trend to a rise in 8-hydroxyguanine and protein-bound 3-nitrotyrosine. Transfection of these cell lines with DNA encoding two mutant SOD1 enzymes (G37R and G85R) associated with familial amyotrophic lateral sclerosis (FALS), produced similar, but more severe changes, i.e. even lower growth rates, higher lipid peroxidation, 3-nitrotyrosine and protein carbonyl levels, decreased GSH levels, raised GSSG levels and higher glutathione peroxidase activities. Since G85R has little SOD activity, these changes cannot be related to increased O(2)(-) scavenging. In no case was SOD2 (mitochondrial Mn-SOD) level altered. Our cellular systems reproduce many of the biochemical changes observed in patients with DS or ALS, and in transgenic mice overexpressing mutant SOD1. They also show the potentially deleterious effects of SOD1 overexpression on cellular proliferation, which may be relevant to abnormal development in DS.  相似文献   

11.
Fibroblasts from patients with xeroderma pigmentosum (XP) complementation groups A, C, D, E, and G, as well as Bloom syndrome (BS) and Fanconi anemia (FA) have been transfected with a plasmid, pSV7, containing the early region of Simian virus 40 (SV40). All of the cultures exhibited cytologic changes characteristic of transformed cells and expressed T-antigen. They also contained integrated copies of DNA derived from the vector, and in several cases, extrachromosomally replicated DNA. Not all of the transfected cultures became immortalized. The transformed xeroderma pigmentosum (XP) cultures retained their UV-sensitive phenotype in all but one case. The BS and FA cell lines retained their characteristic phenotype. All of the cultures, except the BS cells, can be readily transfected with the plasmids, pSV2neo and pSV2gpt.  相似文献   

12.
The addition of tert-butyl hydroperoxide (t-BuOOH) to isolated mitochondria resulted in oxidation of approximately 80% of the mitochondrial reduced glutathione (GSH) independently of the dose of t-BuOOH (1-5 mM). Concomitant with the oxidation of GSH inside the mitochondria was the formation of GSH-protein mixed disulfides (protein-SSG), with approximately 1% of the mitochondrial protein thiols involved. A dose-dependent rate of GSH recovery was observed, via the reduction of oxidized GSH (GSSG) and a slower reduction of protein-SSG. Although t-BuOOH administration affected the respiratory control ratio, the mitochondria remained coupled and loss of the matrix enzyme, citrate synthase, was not increased over the control and was less than 3% over 60 min. A slow loss of GSH out of the coupled non-treated mitochondria was not increased by t-BuOOH treatment, in fact, a dose-dependent drop of GSH levels occurred in the medium. However, no GSSG was found outside the mitochondria, indicating the necessary involvement of enzymes in the t-BuOOH-induced conversion of GSH to GSSG. The absence of GSSG in the medium also suggests that, unlike the plasma membrane, the mitochondrial membranes do not have the ability to export GSSG as a response to oxidative stress. Our results demonstrate the inability of mitochondria to export GSSG during oxidative stress and may explain the protective role of mitochondrial GSH in cytotoxicity.  相似文献   

13.
Several primary and transformed human cell lines derived from cancer prone patients are employed routinely for biochemical and DNA repair studies. Since transformation leads to some chromosomal instability a cytogenetic analysis of spontaneous chromosome aberrations in fibroblast cell lines derived from patients with Fanconi anaemia (FA), ataxia telangiectasia (AT), and in lymphoblastoid cell lines derived from patients with Bloom's syndrome (BS), was undertaken. Unstable aberrations were analysed in Giemsa stained preparations and the chromosome painting technique was used for evaluating the frequencies of stable aberrations (translocations). In addition, the frequency of sister-chromatid exchanges (SCEs) was determined in differentially stained metaphases. The SV40-transformed fibroblasts from these cell lines have higher frequencies of unstable aberrations than the primary fibroblasts. In the four lymphoblastoid cell lines derived from BS patients higher frequencies of spontaneously occurring chromosomal aberrations in comparison to normal TK6wt cells were also evident. The frequency of spontaneously occurring chromosome translocations was determined with fluorescence in situ hybridisation (FISH) and using DNA libraries specific for chromosomes 1, 2, 3, 4, 7, 8, 11, 14, 19, 20 and X. The translocation levels were found to be elevated for primary FA fibroblasts and lymphoblastoid cells derived from BS patients in comparison with control cell lines, hetero- and homozygote BS cell lines not differing in this respect. The SV40-transformed cell lines showed very high frequencies of translocations independent of their origin and almost every cell contained at least one translocation. In addition, clonal translocations were found in transformed control TK6wt and AT cell lines for chromosomes 20 and 14, respectively. The spontaneous frequencies of SCEs were similar in transformed fibroblasts derived from normal individuals and AT patients, whereas in SV40-transformed FA cells these were higher (4-fold). Among cell lines derived from BS patients, heterozygote lines behaved like control, whereas in homozygote cell lines very high frequencies of SCEs (about 12-fold) were evident.  相似文献   

14.
The hypothesis was tested that Werner syndrome (WS) phenotype might be associated with an in vivo prooxidant state. A set of redox-related endpoints were measured in three WS patients, two of their parents, and 99 controls within a study of some cancer-prone and/or ageing-related genetic disorders. The following analytes were measured: (a) leukocyte 8-hydroxy-2'-deoxyguanosine; (b) glutathione from whole blood, and (c) plasma levels of glyoxal, methylglyoxal, 8-isoprostane, and some plasma antioxidants (uric acid, ascorbic acid, alpha- and gamma-tocopherol). Leukocyte 8-hydroxy-2'-deoxyguanosine levels showed a significant increase in the 3 WS patients vs. 85 controls (p<10(-7)). The disulfide glutathione:glutahione ratio was significantly altered in WS patients (p=0.005). Glyoxal and methylglyoxal levels were significantly increased (p=0.018 and p=0.007, respectively). The plasma levels of uric acid (p=0.002) and ascorbic acid (p=0.003) were also increased significantly in WS patients and in their parents. No significant alterations were found in the plasma levels of alpha- and gamma-tocopherol, nor of 8-isoprostane. This is the first report of in vivo alterations of oxidative stress parameters in WS patients. Further investigations on more extensive study populations are warranted to verify the relevance of an in vivo prooxidant state in WS patients.  相似文献   

15.
Glutathione (GSH) is an important component of antioxidant defenses in airway surface liquid (ASL), a thin layer (10-30 microm) of liquid covering the epithelial cells lining the airways of the lung. Decreased levels of ASL GSH have been reported in cystic fibrosis (CF), potentially contributing to the severe oxidative stress seen in this disease. To help investigate the role of GSH in ASL, we developed a technique suitable for analysis of GSH and its oxidized form (GSSG) in microliter samples using capillary sampling followed by capillary zone electrophoresis (CZE) analysis with conductivity detection. CZE was carried out in 100 mM CHES and 40 mM lithium hydroxide with 5 mM spermine at pH 9.1 under an applied electric field of -416 V cm(-1). To prevent any autooxidation of GSH during sample manipulations, the samples were treated with N-ethylmaleimide (50 mM) to alkylate free thiol (-SH). Under these conditions, GSH and GSSG were cleanly separated without interference from common anions (e.g. Cl(-), PO(4)(3-), HCO(3)(-), etc.) and the limit of detection for ASL analysis was 11 microM for GSH and 8 microM for GSSG (S/N=3). GSH and GSSG were also measured in rat plasma. Baseline values of 897+/-210 microM (GSH) and 215+/-61 microM (GSSG) were obtained for rat ASL (n=8), whereas 12.4+/-2.7 microM (GSH) and 14.8+/-6.7 microM (GSSG) were obtained for rat plasma (n=5).  相似文献   

16.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

17.
Experiments were carried out to establish the role of glutathione reductase (GR), if any, in the metabolic conversion of disulfiram (DS) to diethyldithiocarbamate (DDC). It was observed that, under standard assay conditions, whereas DS was incorporated as a substrate instead of oxidised glutathione (GSSG), the enzymes from both human liver extract and yeast sources failed to reduce the parent compound, implying that glutathione reductase perse do not reduce disulfiram. However, the incorporation of disulfiram into an assay system comprising of GSSG, NADPH and reductase resulted in DS reduction to DDC. Further, the observation, that the GR assay system devoid of either GSSG or NADPH was found to lack DS reducing ability, implies that GSH as a reaction product of GR system is responsible for the reduction of DS to DDC. The results of in-vitro experiments indicated that GSH perse could reduce DS to DDC nonenzymatically, with a stoichiometric relationship of 2:1. Thus it is inferred that GR perse do not reduce DS, whereas GSH, as an intermediary metabolite of GR system, brings about non-enzymatic reduction of DS via a sulfhydral group exchange reaction.  相似文献   

18.
Oxidative damage accumulation in macromolecules has been considered as a cause of cellular damage and pathology. Rarely, the oxidative stress parameters in healthy humans related to the individual age have been reported. The purpose of this study was to examine the redox status in plasma and erythrocytes of healthy individuals and determine correlations between these parameters and the aging process. The following parameters were used: malondialdehyde (MDA), protein carbonyls (PCO), 4-hydroxy-2,3-trans-nonenal (HNE), reduced glutathione (GSH), glutathione disulfide (GSSG) and uric acid (UA) in blood and plasma samples of 194 healthy women and men of ages ranging from 18 to 84 years. The results indicate that the balance of oxidant and antioxidant systems in plasma shifts in favor of accelerated oxidation during ageing. That is demonstrated by increases of MDA, HNE, GSSG and by the slight decrease of erythrocytic GSH with age. As the content of UA is more determined by metabolic and nutritional influences than by the balance between prooxidants and antioxidants there was no significant age-related change observed. For plasma concentrations of HNE the first time age-dependent reference values for healthy humans are presented.  相似文献   

19.
Oxidative stress is reputed to be a significant contributor to the aging process and a key factor affecting species longevity. The tremendous natural variation in maximum species lifespan may be due to interspecific differences in reactive oxygen species generation, antioxidant defenses and/or levels of accrued oxidative damage to cellular macromolecules (such as DNA, lipids and proteins). The present study tests if the exceptional longevity of the longest living (> 28.3 years) rodent species known, the naked mole-rat (NMR, Heterocephalus glaber ), is associated with attenuated levels of oxidative stress. We compare antioxidant defenses (reduced glutathione, GSH), redox status (GSH/GSSG), as well as lipid (malondialdehyde and isoprostanes), DNA (8-OHdG), and protein (carbonyls) oxidation levels in urine and various tissues from both mole-rats and similar-sized mice. Significantly lower GSH and GSH/GSSG in mole-rats indicate poorer antioxidant capacity and a surprisingly more pro-oxidative cellular environment, manifested by 10-fold higher levels of in vivo lipid peroxidation. Furthermore, mole-rats exhibit greater levels of accrued oxidative damage to lipids (twofold), DNA (~two to eight times) and proteins (1.5 to 2-fold) than physiologically age-matched mice, and equal to that of same-aged mice. Given that NMRs live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of this species.  相似文献   

20.
Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号