首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large clostridial glucosylating toxins (LCGTs) are produced by toxigenic strains of Clostridium difficile, Clostridium perfringens, Clostridium novyi and Clostridium sordellii. While most C. sordellii strains solely produce lethal toxin (TcsL), C. sordellii strain VPI9048 co‐produces both hemorrhagic toxin (TcsH) and TcsL. Here, the sequences of TcsH‐9048 and TcsL‐9048 are provided, showing that both toxins retain conserved LCGT features and that TcsL and TcsH are highly related to Toxin A (TcdA) and Toxin B (TcdB) from C. difficile strain VPI10463. The substrate profile of the toxins was investigated with recombinant LCGT transferase domains (rN) and a wide panel of small GTPases. rN‐TcsH‐9048 and rN‐TcdA‐10463 glucosylated preferably Rho‐GTPases but also Ras‐GTPases to some extent. In this respect, rN‐TcsH‐9048 and rN‐TcdA‐10463 differ from the respective full‐length TcsH‐9048 and TcdA‐10463, which exclusively glucosylate Rho‐GTPases. rN‐TcsL‐9048 and full length TcsL‐9048 glucosylate both Rho‐ and Ras‐GTPases, whereas rN‐TcdB‐10463 and full length TcdB‐10463 exclusively glucosylate Rho‐GTPases. Vero cells treated with full length TcsH‐9048 or TcdA‐10463 also showed glucosylation of Ras, albeit to a lower extent than of Rho‐GTPases. Thus, in vitro analysis of substrate spectra using recombinant transferase domains corresponding to the auto‐proteolytically cleaved domains, predicts more precisely the in vivo substrates than the full length toxins. Except for TcdB‐1470, all LCGTs evoked increased expression of the small GTPase RhoB, which exhibited cytoprotective activity in cells treated with TcsL isoforms, but pro‐apoptotic activity in cells treated with TcdA, TcdB, and TcsH. All LCGTs induced a rapid dephosphorylation of pY118‐paxillin and of pS144/141‐PAK1/2 prior to actin filament depolymerization indicating that disassembly of focal adhesions is an early event leading to the disorganization of the actin cytoskeleton.  相似文献   

2.
This review examines calcium and phosphate transport in the kidney through the lens of the rare X‐linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC‐5, a Cl?/H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC‐5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC‐5 KO models suggests that ClC‐5 mediates parathormone endocytosis from tubular fluid. In addition, ClC‐5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.  相似文献   

3.
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.  相似文献   

4.
The most potent toxins secreted by pathogenic bacteria contain enzymatic moieties that must reach the cytosol of target cells to exert their full toxicity. Toxins such as anthrax, diphtheria, and botulinum toxin all use three well-defined functional domains to intoxicate cells: a receptor-binding moiety that triggers endocytosis into acidified vesicles by binding to a specific host-cell receptor, a translocation domain that forms pores across the endosomal membrane in response to acidic pH, and an enzyme that translocates through these pores to catalytically inactivate an essential host cytosolic substrate. The homologous toxins A (TcdA) and Toxin B (TcdB) secreted by Clostridium difficile are large enzyme-containing toxins that for many years have eluded characterization. The cell-surface receptors for these toxins, the non-classical nature of the pores that they form in membranes, and mechanism of translocation have remained undefined, exacerbated, in part, by the lack of any structural information for the central ~1000 amino acid translocation domain. Recent advances in the identification of receptors for TcdB, high-resolution structural information for the translocation domain, and a model for the pore have begun to shed light on the mode-of-action of these toxins. Here, we will review TcdA/TcdB uptake and entry into mammalian cells, with focus on receptor binding, endocytosis, pore formation, and translocation. We will highlight how these toxins diverge from classical models of translocating toxins, and offer our perspective on key unanswered questions for TcdA/TcdB binding and entry into mammalian cells.  相似文献   

5.
Toxin B (TcdB) is a major pathogenic factor of Clostridum difficile. However, the mechanism by which TcdB exerts its cytotoxic action in host cells is still not completely known. Herein, we report for the first time that TcdB induced autophagic cell death in cultured human colonocytes. The induction of autophagy was demonstrated by the increased levels of LC3‐II, formation of LC3+ autophagosomes, accumulation of acidic vesicular organelles and reduced levels of the autophagic substrate p62/SQSTM1. TcdB‐induced autophagy was also accompanied by the repression of phosphoinositide 3‐kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) complex 1 activity. Functionally, pharmacological inhibition of autophagy by wortmannin or chloroquine or knockdown of autophagy‐related genes Beclin 1, Atg5 and Atg7 attenuated TcdB‐induced cell death in colonocytes. Genetic ablation of Atg5, a gene required for autophagosome formation, also mitigated the cytotoxic effect of TcdB. In conclusion, our study demonstrated that autophagy serves as a pro‐death mechanism mediating the cytotoxic action of TcdB in colonocytes. This discovery suggested that blockade of autophagy might be a novel therapeutic strategy for C. difficile infection.  相似文献   

6.
TcdA and TcdB are the main pathogenicity factors of Clostridium difficile‐associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation. TcdB and the glucosyltransferase‐deficient mutant TcdB D286/288N induced pyknotic cell death which was associated with chromatin condensation and reduced H3 phosphorylation. Affected cells showed ballooning of the nuclear envelope and loss of the integrity of the plasma membrane. Furthermore, pyknotic cells were positively stained with dihydroethidium indicating production of reactive oxygen species. In line with this, pyknosis was reduced by apocynin, an inhibitor of the NADPH oxidase. Bafilomycin A1 prevented cytotoxic effects showing that the newly observed pyknosis depends on intracellular action of TcdB rather than on a receptor‐mediated effect. Blister formation and chromatin condensation was specifically induced by the glucosyltransferase domain of TcdB from strain VPI10473 since neither TcdBF from cdi1470 nor the chimera of TcdB harbouring the glucosyltransferase domain of TcdBF was able to induce these effects. In summary, TcdB induces two different and independent phenotypes: (i) cell rounding due to glucosylation of Rho GTPases and (ii) shrinkage of cells and nuclear blister induced by the high concentrations of TcdB independent of Rho glucosylation.  相似文献   

7.
Clostridium difficile Toxin B (TcdB) glucosylates low molecular weight GTP-binding proteins of the Rho subfamily and thereby causes actin re-organization (cell rounding). This "cytopathic effect" has been generally attributed to RhoA inactivation. Here we show that cells expressing non-glucosylatable Rac1-Q61L are protected from the cytopathic effect of TcdB. In contrast, cells expressing RhoA-Q63L or mock-transfected cells are fully susceptible for the cytopathic effect of TcdB. These findings are extended to the Rac1/RhoG mimic IpgB1 and the RhoA mimic IpgB2 from Shigella. Ectopic expression of IpgB1, but not IpgB2, counteracts the cytopathic effect of TcdB. These data strongly suggest that Rac1 rather than RhoA glucosylation is critical for the cytopathic effect of TcdB.  相似文献   

8.
Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking.  相似文献   

9.
The ClC family encompasses two classes of proteins with distinct transport functions: anion channels and transporters. ClC-type transporters usually mediate secondary active anion–proton exchange. However, under certain conditions they assume slippage mode behavior in which proton and anion transport are uncoupled, resulting in passive anion fluxes without associated proton movements. Here, we use patch clamp and intracellular pH recordings on transfected mammalian cells to characterize exchanger and slippage modes of human ClC-4, a member of the ClC transporter branch. We found that the two transport modes differ in transport mechanisms and transport rates. Nonstationary noise analysis revealed a unitary transport rate of 5 × 105 s−1 at +150 mV for the slippage mode, indicating that ClC-4 functions as channel in this mode. In the exchanger mode, unitary transport rates were 10-fold lower. Both ClC-4 transport modes exhibit voltage-dependent gating, indicating that there are active and non-active states for the exchanger as well as for the slippage mode. ClC-4 can assume both transport modes under all tested conditions, with exchanger/channel ratios determined by the external anion. We propose that binding of transported anions to non-active states causes transition from slippage into exchanger mode. Binding and unbinding of anions is very rapid, and slower transitions of liganded and non-liganded states into active conformations result in a stable distribution between the two transport modes. The proposed mechanism results in anion-dependent conversion of ClC-type exchanger into an anion channel with typical attributes of ClC anion channels.  相似文献   

10.
The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain. The current study evaluates the role of the CROP domain with respect to functionality of TcdA and TcdB. Therefore, we generated truncated TcdA devoid of the CROPs (TcdA(1-1874)) and found that this mutant was still cytopathic. However, TcdA(1-1874) possesses about 5 to 10-fold less potency towards 3T3 and HT29 cells compared to the full length toxin. Interestingly, CHO-C6 cells even showed almost identical susceptibility towards truncated and full length TcdA concerning Rac1 glucosylation or cell rounding, respectively. FACS and Western blot analyses elucidated these differences and revealed a correlation between CROP-binding to the cell surface and toxin potency. These findings refute the accepted opinion of solely CROP-mediated toxin internalization. Competition experiments demonstrated that presence neither of TcdA CROPs nor of full length TcdA reduced binding of truncated TcdA(1-1874) to HT29 cells. We assume that toxin uptake might additionally occur through alternative receptor structures and/or other associated endocytotic pathways. The second assumption was substantiated by TER measurements showing that basolaterally applied TcdA(1-1874) exhibits considerably higher cytotoxic potency than apically applied mutant or even full length TcdA, the latter being almost independent of the side of application. Thus, different routes for cellular uptake might enable the toxins to enter a broader repertoire of cell types leading to the observed multifarious pathogenesis of C. difficile.  相似文献   

11.
TcdB, an intracellular bacterial toxin that inactivates small GTPases, is a major Clostridium difficile virulence factor. Recent studies have found that TcdB produced by emerging/hypervirulent strains of C. difficile is more potent than TcdB from historical strains, and in the current work, studies were performed to investigate the underlying mechanisms for this change in TcdB toxicity. Using a series of biochemical analyses we found that TcdB from a hypervirulent strain (TcdBHV) was more efficient at autoprocessing than TcdB from a historical strain (TcdBHIST). TcdBHV and TcdBHIST were activated by similar concentrations of IP6; however, the overall efficiency of processing was 20% higher for TcdBHV. Using an activity‐based fluorescent probe (AWP19) an intermediate, activated but uncleaved, form of TcdBHIST was identified, while only a processed form of TcdBHV could be detected under the same conditions. Using a much higher concentration (200 µM) of the probe revealed an activated uncleaved form of TcdBHV, indicating a preferential and more efficient engagement of intramolecular substrate than TcdBHIST. Furthermore, a peptide‐based inhibitor (Ac‐GSL‐AOMK) was found to block the cytotoxicity of TcdBHIST at a lower concentration than required to inhibit TcdBHV. These findings suggest that TcdBHV may cause increased cytotoxicity due to more efficient autoprocessing.  相似文献   

12.

Background

Clostridium difficile toxins A and B (TcdA and TcdB), considered to be essential for C. difficile infection, affect the morphology of several cell types with different potencies and timing. However, morphological changes over various time scales are poorly characterized. The toxins’ glucosyltransferase domains are critical to their deleterious effects, and cell responses to glucosyltransferase-independent activities are incompletely understood. By tracking morphological changes of multiple cell types to C. difficile toxins with high temporal resolution, cellular responses to TcdA, TcdB, and a glucosyltransferase-deficient TcdB (gdTcdB) are elucidated.

Results

Human umbilical vein endothelial cells, J774 macrophage-like cells, and four epithelial cell lines (HCT8, T84, CHO, and immortalized mouse cecal epithelial cells) were treated with TcdA, TcdB, gdTcdB. Impedance across cell cultures was measured to track changes in cell morphology. Metrics from impedance data, developed to quantify rapid and long-lasting responses, produced standard curves with wide dynamic ranges that defined cell line sensitivities. Except for T84 cells, all cell lines were most sensitive to TcdB. J774 macrophages stretched and increased in size in response to TcdA and TcdB but not gdTcdB. High concentrations of TcdB and gdTcdB (>10 ng/ml) greatly reduced macrophage viability. In HCT8 cells, gdTcdB did not induce a rapid cytopathic effect, yet it delayed TcdA and TcdB’s rapid effects. gdTcdB did not clearly delay TcdA or TcdB’s toxin-induced effects on macrophages.

Conclusions

Epithelial and endothelial cells have similar responses to toxins yet differ in timing and degree. Relative potencies of TcdA and TcdB in mouse epithelial cells in vitro do not correlate with potencies in vivo. TcdB requires glucosyltransferase activity to cause macrophages to spread, but cell death from high TcdB concentrations is glucosyltransferase-independent. Competition experiments with gdTcdB in epithelial cells confirm common TcdA and TcdB mechanisms, yet different responses of macrophages to TcdA and TcdB suggest different, additional mechanisms or targets in these cells. This first-time, precise quantification of the response of multiple cell lines to TcdA and TcdB provides a comparative framework for delineating the roles of different cell types and toxin-host interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0361-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe that can cause nosocomial antibiotic-associated intestinal disease. Although the production of toxin A (TcdA) and toxin B (TcdB) contribute to the main pathogenesis of C. difficile, the mechanism of TcdA and TcdB release from cell remains unclear. In this study, we identified and characterized a new cell wall hydrolase Cwl0971 (CDR20291_0971) from C. difficile R20291, which is involved in bacterial autolysis. The gene 0971 deletion mutant (R20291Δ0971) generated with CRISPR-AsCpfI exhibited significantly delayed cell autolysis and increased cell viability compared to R20291, and the purified Cwl0971 exhibited hydrolase activity for Bacillus subtilis cell wall. Meanwhile, 0971 gene deletion impaired TcdA and TcdB release due to the decreased cell autolysis in the stationary/late phase of cell growth. Moreover, sporulation of the mutant strain decreased significantly compared to the wild type strain. In vivo, the defect of Cwl0971 decreased fitness over the parent strain in a mouse infection model. Collectively, Cwl0971 is involved in cell wall lysis and cell viability, which affects toxin release, sporulation, germination, and pathogenicity of R20291, indicating that Cwl0971 could be an attractive target for C. difficile infection therapeutics and prophylactics.  相似文献   

14.
Clostridium difficile may induce antibiotic‐associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB‐induced rise in intracellular‐free Ca2+ and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR‐1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR‐1. Domain analyses revealed that the N‐terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro‐inflammatory ligand effect can be triggered even by cleaved and, thus, non‐cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved ‘non‐cytotoxic’ fragments and (iii) an interaction of the N‐terminal glucosyltransferase domain instead of the C‐terminal receptor binding domain of TcdB with target cells.  相似文献   

15.
Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal epithelial and subepithelial receptors, including frizzled proteins and chondroitin sulfate proteoglycan 4 (CSPG4). Here, we present cryo-EM structures of full-length TcdB in complex with the CSPG4 domain 1 fragment (D1401-560) at cytosolic pH and the cysteine-rich domain of frizzled-2 (CRD2) at both cytosolic and acidic pHs. CSPG4 specifically binds to the autoprocessing and delivery domains of TcdB via networks of salt bridges, hydrophobic and aromatic/proline interactions, which are disrupted upon acidification eventually leading to CSPG4 drastically dissociating from TcdB. In contrast, FZD2 moderately dissociates from TcdB under acidic pH, most likely due to its partial unfolding. These results reveal structural dynamics of TcdB during its preentry step upon endosomal acidification, which provide a basis for developing therapeutics against C. difficile infections.

Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal receptors. This structural study of TcdB in complex with frizzled-2 and chondroitin sulfate proteoglycan 4 reveals how TcdB binds to human receptors and primes itself for host entry.  相似文献   

16.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

17.
Genomic DNA from ribotype-01 and -17 Clostridium difficile strains was used for amplification of the sequences encoding the carboxy-terminal domain of toxins A (TcdA) and B (TcdB). The deduced C-terminal TcdB ribotype-01 and -17 domains share 99.5% amino acid sequence identity while TcdA ribotype-17 comprises a 607 amino acid deletion compared to TcdA-01. When compared to previously sequenced C. difficile toxins, 99.3% amino acid identity was found between TcdA-01 and TcdA from strain VPI10643 and 98.8% identity between TcdA-17 and TcdA from strain F-1470. The obtained sequences were fused in 3' to a sequence encoding a hexahistidine tag and cloned into an Escherichia coli expression vector. The recombinant proteins were expressed in E. coli and purified using single-step metal-chelate chromatography. The recombinant carboxy-terminal domain of TcdA-01 was purified from the soluble E. coli lysate fraction whereas TcdA-17 and TcdB-17 carboxy-terminal domains were purified from inclusion bodies. At least 40 mg of each protein was purified per liter of bacterial culture. The recombinant toxin domains were detected specifically by Western blot and ELISA with antibodies against native C. difficile toxins. This study demonstrated that the carboxy-terminal domains of TcdA and TcdB can be produced using an E. coli expression system and easily purified. These recombinant, stable, and non-toxic proteins provide a convenient source for use in the diagnosis of C. difficile infections, instead of native toxins, as controls and calibrators in immunoassay kits and to obtain specific monoclonal antibodies.  相似文献   

18.
19.
The TOX A/B QUIK CHEK "NISSUI" which detects both toxin A (TcdA) and toxin B (TcdB) of Clostridium difficile in stool specimens through immunochromatography was first approved to be released in Japan, and we evaluated its accuracy. In the evaluation, the TOX A/B QUIK CHEK "NISSUI" could correctly detect TcdA and TcdB in solution and in stool specimens spiked with culture broth of TcdA and/or TcdB-producing isolates of C. difficile. The minimum detectable concentrations for TcdA and TcdB were determined to be < or =0.32 ng/ml and < or =0.63 ng/ml, respectively. The TOX A/B QUIK CHEK "NISSUI" gave the consistent results with the colon-endoscopic diagnosis, that is, all the 10 stool specimens from the patients with pseudomembranous colitis were read as being positive, but negative for five patients without any C. difficile-associated disease (CDAD). Of 10 positive stool specimens, one was read as being negative by the commercially available test reagents that can detect only TcdA. In clinical evaluation, a total of 240 stool specimens were tested. Of these, the TOX A/B QUIK CHEK "NISSUI" gave 19 positive results, and TcdA and/or TcdB-producing strains of C. difficile were successfully isolated from all the positive stool specimens, except one. Whereas, of 221 negative stool specimens, 28 isolates of C. difficile were recovered and 11 isolates were identified as TcdA and/or TcdB-producing strains. With these results, it can be concluded that the TOX A/B QUIK CHEK "NISSUI" can correctly detect both TcdA and TcdB of C. difficile, and should be promptly applied to clinical microbiology laboratory to make a definite diagnosis of CDAD, particularly for the CDAD caused by the TcdA-negative but TcdB-positive mutant strains.  相似文献   

20.
Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号