首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported that Hepatitis C virus (HCV) RNA replication requires one or more geranylgeranylated host proteins. Using a combination of [(3)H]mevalonate labeling, coimmunoprecipitation, and bioinformatic search, we identified a geranylgeranylated host protein required for HCV RNA replication. This protein, FBL2, contains an F box domain and a CAAX motif (CVIL). It forms a stable immunoprecipitable complex with the HCV nonstructural protein 5A (NS5A). The association of FBL2 with NS5A requires the CAAX motif of FBL2, but not the F box. Deletion of the F box created a dominant-negative protein that inhibited replication of HCV RNA when overexpressed in Huh7-K2040 cells; this inhibition was overcome by coexpression of NS5A. siRNA-mediated knockdown of FBL2 mRNA by 70% in Huh7-HP cells reduced HCV RNA by 65%; this reduction was overcome by expression of a cDNA encoding a wobble mutant of FBL2. The current data indicate that geranylgeranylated FBL2 binds to NS5A in a reaction crucial for HCV RNA replication.  相似文献   

2.
Hepatitis C virus (HCV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma and one of the primary indications for liver transplantation. The molecular mechanisms underlying the actions of host factors in HCV replication remain poorly defined. FUSE (far upstream element of the c-myc proto-oncogene) binding protein (FBP) is a cellular factor that we have identified as a binder of HCV 3' nontranslated region (3'NTR). Mapping of the binding site showed that FBP specifically interacts with the poly(U) tract within the poly(U/UC) region of the 3'NTR. Silencing of FBP expression by small interfering RNA in cells carrying HCV subgenomic replicons severely reduced viral replication, while overexpression of FBP significantly enhanced viral replication. We confirmed these observations by an in vitro HCV replication assay in the cell-free replicative lysate, which suggested that there is a direct correlation between the cellular FBP level and HCV replication. FBP immunoprecipitation coprecipitated HCV nonstructural protein 5A (NS5A), indicating that FBP interacts with HCV NS5A, which is known to function as a link between HCV translation and replication. Although FBP is mainly localized in the nucleus, we found that in MH14 cells a significant level of this protein is colocalized with NS5A in the cytosol, a site of HCV replication. While the mechanism of FBP involvement in HCV replication is yet to be delineated, our findings suggest that it may be an important regulatory component that is essential for efficient replication of HCV.  相似文献   

3.
GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G‐proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf‐guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA‐mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.  相似文献   

4.
Lim YS  Tran HT  Park SJ  Yim SA  Hwang SB 《Journal of virology》2011,85(17):8777-8788
The life cycle of hepatitis C virus (HCV) is highly dependent on cellular factors. Using small interfering RNA (siRNA) library screening, we identified peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) as a host factor involved in HCV propagation. Here we demonstrated that silencing of Pin1 expression resulted in decreases in HCV replication in both HCV replicon cells and cell culture-grown HCV (HCVcc)-infected cells, whereas overexpression of Pin1 increased HCV replication. Pin1 interacted with both the NS5A and NS5B proteins. However, Pin1 expression was increased only by the NS5B protein. Both the protein binding and isomerase activities of Pin1 were required for HCV replication. Juglone, a natural inhibitor of Pin1, inhibited HCV propagation by inhibiting the interplay between the Pin1 and HCV NS5A/NS5B proteins. These data indicate that Pin1 modulates HCV propagation and may contribute to HCV-induced liver pathogenesis.  相似文献   

5.
Yi M  Lemon SM 《Journal of virology》2003,77(6):3557-3568
We describe a mutational analysis of the 3' nontranslated RNA (3'NTR) signals required for replication of subgenomic hepatitis C virus (HCV) RNAs. A series of deletion mutants was constructed within the background of an HCV-N replicon that induces the expression of secreted alkaline phosphatase in order to examine the requirements for each of the three domains comprising the 3'NTR, namely, the highly conserved 3' terminal 98-nucleotide (nt) segment (3'X), an upstream poly(U)-poly(UC) [poly(U/UC)] tract, and the variable region (VR) located at the 5' end of the 3'NTR. Each of these domains was found to contribute to efficient replication of the viral RNA in transiently transfected hepatoma cells. Replication was not detected when any of the three putative stem-loop structures within the 3'X region were deleted. Similarly, complete deletion of the poly(U/UC) tract abolished replication. Replacement of a minimum of 50 to 62 nt of poly(U/UC) sequence was required for detectable RNA replication when the native sequence was restored in a stepwise fashion from its 3' end. Lengthier poly(U/UC) sequences, and possibly pure homopolymeric poly(U) tracts, were associated with more efficient RNA amplification. Finally, while multiple deletion mutations were tolerated within VR, each led to a partial loss of replication capacity. The impaired replication capacity of the deletion mutants could not be explained by reduced translational activity or by decreased stability of the RNA, suggesting that each of these mutations may impair recognition of the RNA by the viral replicase during an early step in negative-strand RNA synthesis. The results indicate that the 3'-most 150 nt of the HCV-N genome [the 3'X region and the 3' 52 nt of the poly(U/UC) tract] contain RNA signals that are essential for replication, while the remainder of the 3'NTR plays a facilitating role in replication but is not absolutely required.  相似文献   

6.
Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected.  相似文献   

7.
Study of the proteins involved in DNA replication of a model system such as SV40 is a first step in understanding eukaryotic chromosomal replication. Using a cell-free system that is capable of replicating plasmid DNA molecules containing the SV40 origin of replication, we conducted a series of systematic fractionation-reconstitution experiments for the purpose of identifying and characterizing the cellular proteins involved in SV40 DNA replication. In addition to the one viral-encoded replication protein, T antigen, we have identified and begun to characterize at least six cellular components from a HeLa cytoplasmic extract that are absolutely required for SV40 DNA replication in vitro. These include: (i) two partially purified fractions, CF IC and CF IIA, and (ii) four proteins that have been purified to near homogeneity, replication protein-A, proliferating cell nuclear antigen, DNA polymerase alpha-primase complex, and topoisomerase (I and II). Replication protein-A is a multi-subunit protein that has single-stranded DNA binding activity and is required for a T antigen-dependent, origin-dependent unwinding reaction which may be an important early step in initiation of replication. Fraction CF IC can stimulate this unwinding reaction, suggesting that it also may function during initiation. Proliferating cell nuclear antigen, DNA polymerase alpha-primase, and CF IIA all appear to be involved in elongation of nascent chains.  相似文献   

8.
DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.  相似文献   

9.
Zhang L  Hong Z  Lin W  Shao RX  Goto K  Hsu VW  Chung RT 《PloS one》2012,7(2):e32135
Cellular levels of phosphatidylinositol 4-phosphate (PI4P) have been shown to be upregulated during RNA replication of several viruses, including the HCV replicon model. However, whether PI4P is required in an infectious HCV model remains unknown. Moreover, it is not established whether the host transport machinery is sequestered by the generation of PI4P during HCV infection. Here we found that PI4P was enriched in HCV replication complexes when Huh7.5.1 cells were infected with JFH1. HCV replication was inhibited upon overexpression of the PI4P phosphatase Sac1. The PI4P kinase PI4KIIIβ was also found to be required for HCV replication. Moreover, the vesicular transport proteins ARF1 and GBF1 colocalized with PI4KIIIβ and were both required for HCV replication. During authentic HCV infection, PI4P plays an integral role in virus replication.  相似文献   

10.
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity. Altogether, our results highlight a functional connection between the early secretory pathway and HCV RNA replication.Hepatitis C virus (HCV) is an important human pathogen. It mainly infects human hepatocytes, and this often leads to chronic hepatitis, cirrhosis, or hepatocarcinoma. HCV studies have been hampered for many years by the difficulty in propagating this virus in vitro. Things have recently changed with the development of a cell culture model referred to as HCVcc (34, 60, 65), which allows the study of the HCV life cycle in cell culture and facilitates studies of the interactions between HCV and the host cell.HCV is an enveloped positive-strand RNA virus belonging to the family Flaviviridae (35). The viral genome contains a single open reading frame, which is flanked by two noncoding regions that are required for translation and replication. All viral proteins that are produced after proteolytic processing of the initially synthesized polyprotein are membrane associated (15, 43). This reflects the fact that virtually all steps of the viral life cycle occur in close association with cellular membranes.Interactions of HCV with cell membranes begin during entry. Several receptors, coreceptors, and other entry factors have been discovered over the years, which link HCV entry to specialized domains of the plasma membrane, such as tetraspanin-enriched microdomains and tight junctions (8, 16, 59). The internalization of the viral particle occurs by clathrin-mediated endocytosis (5, 40). The fusion of the viral envelope with the membrane of an acidic endosome likely mediates the transfer of the viral genome to the cytosol of the cell (5, 40, 57). However, little is known regarding the pre- and postfusion intracellular transport steps of entering viruses in the endocytic pathway.HCV RNA replication is also associated with cellular membranes. Replication begins with the translation of the genomic RNA of an incoming virus. This leads to the production of viral proteins, which in turn initiate the actual replication of the viral RNA. Mechanisms regulating the transition from the translation of the genomic RNA to its replication are not yet known. All viral proteins are not involved in RNA replication. Studies performed with subgenomic replicons demonstrated that proteins NS3-4A, NS4B, NS5A, and NS5B are necessary and sufficient for replication (6, 27, 37). RNA replication proceeds through the synthesis of a cRNA strand (negative strand), catalyzed by the RNA-dependent RNA polymerase activity of NS5B, which is then used as a template for the synthesis of new positive strands.Electron microscopy studies using a subgenomic replicon model suggested that replication takes place in membrane structures made of small vesicles, referred to as “membranous webs,” which are induced by the virus (26). Membranous webs are detectable not only in cells carrying subgenomic replicons but also in infected cells (50). They appear to be associated with the endoplasmic reticulum (ER) (26). In addition to the membranous webs, a second type of ER-associated replicase that is smaller and more mobile has recently been described (63). Cellular mechanisms leading to these membrane alterations are still poorly understood. In cells replicating and secreting infectious viruses effectively, the situation appears to be even more complex, since replicase components appear to be, at least in part, associated with cytoplasmic lipid droplets (41, 50, 56). This association depends on the capsid protein (41) and may reflect a coupling between replication and assembly. Indeed, HCV assembly and secretion show some similarities with very-low-density lipoprotein (VLDL) maturation and secretion (24, 64).Our knowledge of the cellular membrane mechanisms involved in the HCV life cycle is still limited. The expression of NS4B alone induces membrane alterations that are reminiscent of membranous webs (19). However, cellular factors that participate in this process are still unknown. On the other hand, several cellular proteins potentially involved in the HCV life cycle have been identified through their interactions with viral proteins. For some of these proteins, a functional role in infection was recently confirmed using RNA interference (48). It is very likely that other cellular factors critical to HCV infection have yet to be identified.To gain more insight into cellular mechanisms underlying HCV infection, we made use of brefeldin A (BFA), a macrocyclic lactone of fungal origin that exhibits a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways (30). BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARFs). ARFs are small GTP-binding proteins of the Ras superfamily. They function as regulators of vesicular traffic, actin remodeling, and phospholipid metabolism by recruiting effectors to membranes. BFA does not actually interfere directly with ARF GTPases but rather interferes with their activation by regulators known as guanine nucleotide exchange factors (GEFs) (14, 25). We now report the identification of an ARF GEF as a cellular BFA-sensitive factor that is required for HCV replication.  相似文献   

11.
12.
Escherichia coli ribonuclease H was purified to near-homogeneity and identified as the only additional factor required for initiation of in vitro Co1E1 DNA replication from the unique origin by RNA polymerase and DNA polymerase I. Both ribonuclease H activity and stimulating activity for Co1E1 DNA synthesis comigrate with the single protein band in gel electrophoresis. These two activities coincide throughout the process of purification. Some DNA synthesis takes place on covalently closed-circular DNA molecules other than Co1E1 DNA with the three purified enzymes. This DNA synthesis is suppressed by an Escherichia coli single-strand DNA binding protein and/or a high concentration of ribonuclease H. Negative superhelicity of template DNA is required for efficient primer formation. No evidence that supports involvement of ribonuclease III in initiation of Co1E1 DNA replication or its regulation was found.  相似文献   

13.
Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at least two groups by their effect on replication efficiency and cooperativity: (i). mutations in NS3 with a low impact on replication but that enhanced replication cooperatively when combined with highly adaptive mutations and (ii). mutations in NS4B, -5A, and -5B, causing a strong increase in replication but being incompatible with each other. In addition to adaptive mutations, we found that the host cell plays an equally important role for efficient RNA replication. We tested several passages of the same Huh-7 cell line and found up to 100-fold differences in their ability to support replicon amplification. These differences were not due to variations in internal ribosome entry site-dependent translation or RNA degradation. In a search for cellular factor(s) that might be responsible for the different levels of permissiveness of Huh-7 cells, we found that replication efficiency decreased with increasing amounts of transfected replicon RNA, indicating that viral RNA or proteins are cytopathic or that host cell factors in Huh-7 cells limit RNA amplification. In summary, these data show that the efficiency of HCV replication in cell culture is determined both by adaptation of the viral sequence and by the host cell itself.  相似文献   

14.
The NS5A protein of hepatitis C virus (HCV) plays an important but undefined role in viral RNA replication. NS5A has been proposed to be a three-domain protein, and the crystal structure of the well-conserved amino-terminal domain I has been determined. The remaining two domains of NS5A, designated domains II and III, and their corresponding interdomain regions are poorly understood. We have conducted a detailed mutagenesis analysis of NS5A domains II and III using the genotype 1b HCV replicon system. The majority of the mutants containing 15 small (8- to 15-amino-acid) deletions analyzed were capable of efficient RNA replication. Only five deletion mutations yielded lethal phenotypes, and these were colinear, spanning a 56-amino-acid region within domain II. This region was further analyzed by combining triple and single alanine scanning mutagenesis to identify individual residues required for RNA replication. Based upon this analysis, 23 amino acids were identified that were found to be essential. In addition, two residues were identified that yielded a small colony phenotype while possessing only a moderate defect in RNA replication. These results indicate that the entire domain III region and large portions of domain II of the NS5A protein are not required for the function of NS5A in HCV RNA replication.  相似文献   

15.
Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection.  相似文献   

16.
RNA structures play key roles in the replication of RNA viruses. Sequence alignment software, thermodynamic RNA folding programs, and classical comparative phylogenetic analysis were used to build models of six RNA elements in the coding region of the hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B. The importance of five of these elements was evaluated by site-directed mutagenesis of a subgenomic HCV replicon. Mutations disrupting one of the predicted stem-loop structures, designated 5BSL3.2, blocked RNA replication, implicating it as an essential cis-acting replication element (CRE). 5BSL3.2 is about 50 bases in length and is part of a larger predicted cruciform structure (5BSL3). As confirmed by RNA structure probing, 5BSL3.2 consists of an 8-bp lower helix, a 6-bp upper helix, a 12-base terminal loop, and an 8-base internal loop. Mutational analysis and structure probing were used to explore the importance of these features. Primary sequences in the loops were shown to be important for HCV RNA replication, and the upper helix appears to serve as an essential scaffold that helps maintain the overall RNA structure. Unlike certain picornavirus CREs, whose function is position independent, 5BSL3.2 function appears to be context dependent. Understanding the role of 5BSL3.2 and determining how this new CRE functions in the context of previously identified elements at the 5' and 3' ends of the RNA genome should provide new insights into HCV RNA replication.  相似文献   

17.
Tian Y  Sir D  Kuo CF  Ann DK  Ou JH 《Journal of virology》2011,85(24):13453-13456
Recent studies indicate that hepatitis B virus (HBV) may induce autophagy to enhance its replication in cell cultures. To understand whether autophagy can indeed enhance HBV replication in vivo, we generated HBV transgenic mice with liver-specific knockout of the Atg5 gene, a gene critical for the initiation of autophagy. Immunoblot analyses confirmed the inhibition of autophagy in the livers of Atg5 knockout mice. This inhibition of autophagy slightly reduced HBV gene expression and affected nuclear localization of the HBV core protein. It also reduced the HBV DNA level in sera by more than 90% and the level of the HBV DNA replicative intermediate in the mouse liver to an almost undetectable level. Our results thus demonstrate that autophagy is important for HBV replication in vivo and raise the possibility of targeting this pathway to treat HBV patients.  相似文献   

18.
19.
20.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号