首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin‐binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN‐γ and anti‐HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN‐γ but also IL‐17A production by HBHA‐specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.  相似文献   

2.
C57B1/6 female mice were infected with an intrapulmonary dose of 2.5 × 104 BCG(Mycobacterium bovis Bacillus Calmette-Guerin). Lymphocyte populations in lung interstitium and lung-associated tracheal lymph nodes (LN) were examined at 1,2, 4, 5, 6, 8 and 12 weeks after infection. BCG load in lungs peaked between 4–6 weeks post-infection and declined to very low levels by the 12th week of infection. Lung leukocytes were obtained over the course of infection by enzyme digestion of lung tissue followed by centrifugation over Percoll discontinuous density gradients. By 4 to 6 weeks after infection, numbers of lung leukocytes had more than doubled but the proportions of lymphocytes (about 70%), macrophages (about 18%) and granulocytes (about 12%) remained essentially unaltered. Flow cytometric studies indicated: (i) the total number of CD3+ T cells in lungs increased by 3-fold relative to uninfected controls at 5 to 6 weeks post-infection, but the relative proportions of CD4 and CD8 cells within the T cell compartment remained unaltered; (ii) relative proportion of NK cells in lungs declined by 30% but the total number of NK cells (NK1.1+) per lung increased by about 50%, 5–6 weeks post infection; (iii) tracheal LN underwent marked increase in size and cell recoveries (6-10-fold increase) beginning 4 weeks after infection. While both T and B cells contributed to the increase in cell recoveries from infected tracheal LNs, the T/B ratio declined significantly but CD4/CD8 ratio remained unaltered. In control mice, IFNγ producing non-T cells outnumbered T cells producing IFNγ. However, as the adaptive response to infection evolves, marked increase occur in the number of IFNγ producing T cells, but not NK cells in the lungs. Thus, T cells are the primary cell type responsible for the adaptive IFNγ response to pulmonary BCG infection. Few T cells in tracheal LN of BCG infected mice produce IFNγ, suggesting that maturational changes associated with migration to the lungs or residence in the lungs enhance the capability of some T cells to produce this cytokine  相似文献   

3.
IL-17 is a cytokine that induces neutrophil-mediated inflammation, but its role in protective immunity against intracellular bacterial infection remains unclear. In the present study, we demonstrate that IL-17 is an important cytokine not only in the early neutrophil-mediated inflammatory response, but also in T cell-mediated IFN-gamma production and granuloma formation in response to pulmonary infection by Mycobacterium bovis bacille Calmette-Guérin (BCG). IL-17 expression in the BCG-infected lung was detected from the first day after infection and the expression depended on IL-23. Our observations indicated that gammadelta T cells are a primary source of IL-17. Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-gamma in comparison to those from wild-type mice 4 wk after BCG infection. Impaired granuloma formation was also observed in the infected lungs of IL-17-deficient mice, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag. These data suggest that IL-17 is an important cytokine in the induction of optimal Th1 response and protective immunity against mycobacterial infection.  相似文献   

4.
We have reported that macrophages expressing heat-shock protein 65 play an essential role in protection of mice infected with Plasmodium yoelii. In this study, we investigated the function and expression mechanism of HSP65 in macrophages of mice infected with P. yoelii. C57BL/6 (B6) mice are susceptible to infection with the lethal (L) strain but resistant to infection with the non-lethal (NL) strain of P. yoelii. The percentage of apoptotic macrophages in mice infected with the L strain was higher than that in mice infected with the NL strain. However, the percentage was low in L strain infected mice if they acquired resistance to the infection by primary infection with the NL strain. That apoptosis was reversely correlated with HSP65 expression in splenic macrophages from mice infected with P. yoelii suggests HSP65 may contribute to protective immunity by preventing apoptosis of macrophages in malarial infection. Cell depletion/transfer experiments showed that CD4+ T cells, but not CD8+ T cells, gammadelta T cells, NK cells or NK T cells, were required for HSP65 expression in macrophages as well as for protection of mice infected with P. yoelii. In conclusion, HSP65 may play a role in preventing apoptosis of macrophages in mice infected with P. yoelii. CD4+ T cells are required for HSP65 expression and for protective immunity against P. yoelii infection.  相似文献   

5.
The role of macrophage-inducible C-type lectin Mincle in lung innate immunity against mycobacterial infection is incompletely defined. In this study, we show that wild-type (WT) mice responded with a delayed Mincle induction on resident alveolar macrophages and newly immigrating exudate macrophages to infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), peaking by days 14-21 posttreatment. As compared with WT mice, Mincle knockout (KO) mice exhibited decreased proinflammatory mediator responses and leukocyte recruitment upon M. bovis BCG challenge, and they demonstrated increased mycobacterial loads in pulmonary and extrapulmonary organ systems. Secondary mycobacterial infection on day 14 after primary BCG challenge led to increased cytokine gene expression in sorted alveolar macrophages of WT mice, but not Mincle KO mice, resulting in substantially reduced alveolar neutrophil recruitment and increased mycobacterial loads in the lungs of Mincle KO mice. Collectively, these data show that WT mice respond with a relatively late Mincle expression on lung sentinel cells to M. bovis BCG infection. Moreover, M. bovis BCG-induced upregulation of C-type lectin Mincle on professional phagocytes critically shapes antimycobacterial responses in both pulmonary and extrapulmonary organ systems of mice, which may be important for elucidating the role of Mincle in the control of mycobacterial dissemination in mice.  相似文献   

6.
Several lines of evidence have recently suggested that natural killer (NK) cells develop immunological memory against viral infections. However, there is no apparent evidence that NK cells acquire specific memory against Mycobacterium bovis bacillus Calmette—Guérin (BCG), the only currently licensed vaccine for preventing tuberculosis. In the present study, we investigated whether murine splenic NK cells can be activated by BCG in a dendritic cell (DC)-independent or -dependent manner, and furthermore examined whether these NK cells acquire specific memory following BCG vaccination. NK cells isolated from spleens of BCG-immunized mice produced interferon (IFN)γ through direct BCG stimulation in the absence of antigen-presenting cells; however, NK cells from control animals similarly directly responded to BCG, and the response level was not statistically significant between the immunized and the naïve NK cells. When purified NK cells that had been exposed to BCG were cocultured with RAW murine macrophages infected with BCG, the antibacterial activity of the macrophages was strongly enhanced; however, its level was similar to that by naïve NK cells, which had not been exposed to BCG. When splenocytes harvested from BCG-immunized mice were stimulated with purified protein derivative (PPD) derived from Mycobacterium tuberculosis, a specific IFNγ response was clearly observed, mainly attributed to NK cells and memory CD4+ T cells. To investigate whether these NK cells as well as the T cells are activated by cell−cell interaction with DCs presenting mycobacterial antigens, NK cells isolated from BCG-immunized mice were cocultured with splenocytes harvested from naïve mice in the presence of PPD stimulation. However, no IFNγ response was found in the NK cells. These results suggest that murine splenic NK cells do not develop BCG-specific immunological memory in either a DC-independent or -dependent manner.  相似文献   

7.
Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV‐infected population. These seemingly harmless non‐pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV‐associated complications. Although immune‐evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome‐enriched fractions from Mycobacterium bovis Bacillus Calmette–Guérin (BCG) mono‐infected and HIV–M. bovis BCG co‐infected THP‐1 cells by LC‐MALDI‐MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co‐infection helped the survival of non‐pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co‐infection up‐regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co‐infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co‐infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition.  相似文献   

8.
Humans vary widely in their susceptibility to tuberculosis. While only a minority will progress to disease, the majority of healthy individuals exposed to Mycobacterium tuberculosis mount an immune response that can clear or contain the infection in a quiescent form. Using immunofluorescence on human clinical samples, we identified natural killer (NK) cells infiltrating granulomatous pulmonary lesions during active disease. In order to compare the NK cell ability to react to free mycobacteria in the context of tuberculosis infection and Mycobacterium bovis BCG vaccination, NK cells were isolated from the peripheral blood of anonymous healthy human donors, and stimulated with M. tuberculosis H37Rv or M. bovis BCG. Extracellular M. tuberculosis and M. bovis BCG could equally trigger the release of IFNγ and TNFα from NK cells in the presence of IL‐2. However, we found that this response varied 1000‐fold between individuals (n = 52), with differences in KIR haplotype providing a significant criterion to distinguish between low and high responders. Our findings suggest that variations at the KIR locus and therefore of the NK cell repertoire may affect cytokine production in response to mycobacteria and we propose that this innate variability couldsustain different levels of susceptibility to M. tuberculosis infection.  相似文献   

9.
Members of the CSF cytokine family play important roles in macrophage recruitment and activation. However, the role of M-CSF in pulmonary infection with Mycobacterium tuberculosis is not clear. In this study, we show the lungs of mice infected with M. tuberculosis displayed a progressive decrease in M-CSF in contrast to increasing levels of GM-CSF. Restoring pulmonary M-CSF levels during infection resulted in a significant decrease in the presence of foamy macrophages and increased expression of CCR7 and MHC class II, specifically on alveolar macrophages. In response to M-CSF, alveolar macrophages also increased their T cell-stimulating capacity and expression of DEC-205. These studies show that the levels of expression of M-CSF and GM-CSF participate in the progression of macrophages into foamy cells and that these cytokines are important factors in the differentiation and regulation of expression of dendritic cell-associated markers on alveolar macrophages. In addition, these studies demonstrate that M-CSF may have a role in the adaptive immune response to infection with M. tuberculosis.  相似文献   

10.
Our understanding of the correlation of Mycobacterium bovis Bacille Calmette-Guerin (BCG)-mediated immune responses and protection against Mycobacterium tuberculosis (Mtb) infection is still limited. We have recently characterized a Wistar rat model of experimental tuberculosis (TB). In the present study, we evaluated the efficacy of BCG vaccination in this model. Upon Mtb challenge, BCG vaccinated rats controlled growth of the bacilli earlier than unvaccinated rats. Histopathology analysis of infected lungs demonstrated a reduced number of granulomatous lesions and lower parenchymal inflammation in vaccinated animals. Vaccine-mediated protection correlated with the rapid accumulation of antigen specific CD4(+) and CD8(+) T cells in the infected lungs. Immunohistochemistry further revealed higher number of CD8(+) cells in the pulmonary granulomas of vaccinated animals. Evaluation of pulmonary immune responses in vaccinated and Mtb infected rats by real time PCR at day 15 post-challenge showed reduced expression of genes responsible for negative regulation of Th1 immune responses. Thus, early protection observed in BCG vaccinated rats correlated with a similarly timed shift of immunity towards the Th1 type response. Our data support the importance of (i) the Th1-Th2 balance in the control of mycobacterial infection and (ii) the value of the Wistar rats in understanding the biology of TB.  相似文献   

11.
Interleukin‐12 is one of the cytokines that induce acquired immunity by progressing the differentiation of T cells. When antigens are presented by APCs, including macrophages and DCs, T cells are activated and produce the Th1 cytokines IL‐2 and IFN‐γ. We have previously reported greater IL‐12 production from macrophages infected with early‐shared BCG sub‐strains (ex. BCG‐Japan, ‐Sweden) than from those infected with late‐shared BCG (ex. BCG‐Pasteur and ‐Connaught) 1 . In this study, we investigated the Th1 cytokine‐inducing activity of splenocytes co‐cultured with BCG‐infected DCs. Early‐shared BCG‐infected DCs produced IL‐12 and TNF‐α? Furthermore, when they were co‐cultured with purified protein derivative‐stimulated DCs, the splenocytes of mice immunized with BCG‐Tokyo/Japan produced more Th1 cytokine than did those of mice immunized with BCG‐Connaught. In conclusion, early‐shared BCG sub‐strains more strongly induce Th1 cytokine production in vivo. This study provides basic information to inform the selection of candidates for primary vaccination.
  相似文献   

12.
Induction of local (pulmonary) immunity plays a critical role in preventing dissemination of Mycobacterium tuberculosis (M. tb) during the early infection stage. To induce specific mucosal immunity, chitosan, a natural cationic polysaccharide, was employed as a mucosal gene carrier and complexed with pHSP65pep, our previously constructed multi‐epitope gene vaccine, which induces splenic gamma‐interferon (IFN‐γ)+ T helper cell 1 responses. The resultant chitosan–pHSP65pep was administered intranasally to BALB/c mice with four doses of 50 μg DNA followed by mycobacterial challenge 4 weeks after the final immunization. It was found that the chitosan formulation significantly induced production of secretory immunoglobulin A (P < 0.05) as determined by measuring its concentrations in lung lavage fluid and enhanced pulmonary CD4+ and CD8+IFN‐γ+ T cell responses (P < 0.001) compared with naked gene vaccine. Improved protection against Mycobacterium bovis bacillus Calmette–Guérin (BCG) challenge was consistently achieved by the chitosan–DNA formulation both as the vaccine alone or in a BCG prime‐vaccine boost immunization scenario. Our study shows that mucosal delivery of gene vaccine in a chitosan formulation remarkably enhances specific SIgA concentrations and mucosal IFN‐γ+ T cell response, which correlated positively with immunological protection.  相似文献   

13.
Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+ CD25+ T-regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8-fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN-gamma-producing and IL-2-producing CD4+ cells from the spleen and the IL-2-producing CD4+ cells from the lungs of PC61-treated BCG-infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61-treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection-induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.  相似文献   

14.
15.
Host immunity to Mycobacterium tuberculosis is mediated by T cells that recognize and activate infected macrophages to control intracellular bacterial replication. The early appearance of T cells in the lungs of infected mice correlates with greater resistance to infection. However, it is unknown whether the trafficking of T cells to the lung following infection is dependent upon the expression of certain adhesion molecules. To address this question, we infected knockout (KO) mice that have defective expression of CD11a, CD11b, CD18, CD62, CD103, or beta7. We found that the integrins CD11a and CD18 are absolutely required for host resistance following infection with aerosolized M. tuberculosis. Although Ag-specific T cells are generated following infection of CD11a KO mice, T cell priming is delayed, T cell trafficking to the lung is impaired, and fewer ESAT6-specific CD4+ T cells are found in the lungs of CD11a KO mice compared with control mice. Thus, LFA-1 (CD11a/CD18) plays an essential role in immunity to M. tuberculosis infection.  相似文献   

16.
Staphylococcus aureus remains a common cause of nosocomial bacterial infections and are often antibiotic resistant. The role of NK cells and IL-15 and their relationship in host defense against extracellular bacterial pathogens including S. aureus remain unclear. We have undertaken several approaches to address this issue using wild type (WT), IL-15 gene knock-out (KO), and NK cell-depleted mouse models. Upon pulmonary staphylococcal infection WT mice had markedly increased activated NK cells, but not NKT or gammadelta T cells, in the airway lumen that correlated with IL-15 production in the airway and with alveolar macrophages. In vitro exposure to staphylococcal products and/or coculture with lung macrophages directly activated NK cells. In contrast, lung macrophages better phagocytosed S. aureus in the presence of NK cells. In sharp contrast to WT controls, IL-15 KO mice deficient in NK cells were found to be highly susceptible to pulmonary staphylococcal infection despite markedly increased neutrophils and macrophages in the lung. In further support of these findings, WT mice depleted of NK cells were similarly susceptible to staphylococcal infection while they remained fully capable of IL-15 production in the lung at levels similar to those of NK-competent WT hosts. Our study thus identifies a critical role for NK cells in host defense against pulmonary extracellular bacterial infection and suggests that IL-15 is involved in this process via its indispensable effect on NK cells, but not other innate cells. These findings hold implication for the development of therapeutics in treating antibiotic-resistant S. aureus infection.  相似文献   

17.
A successful Th cell response to bacterial infections is induced by mature MHC class II molecules presenting specific Ag peptides on the surface of macrophages. In recent studies, we demonstrated that infection with the conventional vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) specifically blocks the surface export of mature class II molecules in human macrophages by a mechanism dependent on inhibition of cathepsin S (Cat S) expression. The present study examined class II expression in macrophages infected with a rBCG strain engineered to express and secrete biologically active human Cat S (rBCG-hcs). Cat S activity was completely restored in cells ingesting rBCG-hcs, which secreted substantial levels of Cat S intracellularly. Thus, infection with rBCG-hcs, but not parental BCG, restored surface expression of mature MHC class II molecules in response to IFN-gamma, presumably as result of MHC class II invariant chain degradation dependent on active Cat S secreted by the bacterium. These events correlated with increased class II-directed presentation of mycobacterial Ag85B to a specific CD4(+) T cell hybridoma by rBCG-hcs-infected macrophages. Consistent with these findings, rBCG-hcs was found to accelerate the fusion of its phagosome with lysosomes, a process that optimizes Ag processing in infected macrophages. These data demonstrated that intracellular restoration of Cat S activity improves the capacity of BCG-infected macrophages to stimulate CD4(+) Th cells. Given that Th cells play a major role in protection against tuberculosis, rBCG-hcs would be a valuable tuberculosis vaccine candidate.  相似文献   

18.
19.
Humans with immune-compromised conditions such as SCID are unable to control infection caused by normally nonpathogenic intracellular pathogens such as Mycobacterium bovis bacillus Calmette-Guérin. We found that SCID beige mice lacking both lymphocytes and NK cells had functionally normal lung macrophages and yet a selectively impaired response of type 1 cytokines IFN-gamma and IL-12, but not TNF-alpha, during M. bovis bacillus Calmette-Guérin infection. These mice succumbed to such infection. A repeated lung gene transfer strategy was designed to reconstitute IFN-gamma in the lung, which allowed investigation of whether adequate activation of innate macrophages could enhance host defense in the complete absence of lymphocytes. IFN-gamma transgene-based treatment was initiated 10 days after the establishment of mycobacterial infection and led to increased levels of both IFN-gamma and IL-12, but not TNF-alpha, in the lung. Lung macrophages were activated to express increased MHC molecules, type 1 cytokines and NO, and increased phagocytic and mycobactericidal activities. Activation of innate immunity markedly inhibited otherwise uncontrollable growth of mycobacteria and prolonged the survival of infected SCID hosts. Thus, our study proposes a cytokine transgene-based therapeutic modality to enhance host defense in immune-compromised hosts against intracellular bacterial infection, and suggests a central effector activity played by IFN-gamma-activated macrophages in antimycobacterial cell-mediated immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号