首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荧光相关谱技术及其应用   总被引:3,自引:1,他引:2  
基于对处于平衡态少量荧光分子集合的强度涨落进行时间平均的技术,荧光相关谱fluoreswceance correlation spectroscopy,FCS)技术最近已经应用于细胞环境过程的研究。FCS优秀的灵敏特性为我们实时测量许多参数提供了途径,而且具有快速的时间特性和高空间分辨率。测量的参数包括扩散速率、局部浓度、聚合状态和分子间的相互作用。荧光互相关谱(fluorescence cross-correlation spectroscopy,FCCS)进一步扩展了FCS技术的应用,包括在活细胞中的广泛应用。本文介绍了FCS技术的原理、实验装置及其应用。  相似文献   

2.
Recent advances in fluorescence correlation spectroscopy   总被引:7,自引:0,他引:7  
Fluorescence correlation spectroscopy is a method in which fluctuations in the fluorescence arising from a very small sample volume are correlated to obtain information about the processes giving rise to the fluctuations. Recent progress has been made in methodologies such as two-photon excitation, photon counting histogram analysis, cross-correlation, image correlation and evanescent excitation. Fluorescence correlation spectroscopy techniques have been applied to several biological processes, including fluorescent protein photodynamics, binding equilibria and kinetics, protein oligomerization, nucleic acid interactions, and membrane and intracellular dynamics.  相似文献   

3.
Cell biologists strive to characterize molecular interactions directly in the intracellular environment. The intrinsic resolution of optical microscopy, however, allows visualization of only coarse subcellular localization. By extracting information from molecular dynamics, fluorescence cross-correlation spectroscopy (FCCS) grants access to processes on a molecular scale, such as diffusion, binding, enzymatic reactions and codiffusion, and has become a valuable tool for studies in living cells. Here we review basic principles of FCCS and focus on seminal applications, including examples of intracellular signaling and trafficking. We consider FCCS in the context of fluorescence resonance energy transfer and multicolor imaging techniques and discuss application strategies and recent technical advances.  相似文献   

4.
Nagy A  Wu J  Berland KM 《Biophysical journal》2005,89(3):2077-2090
Fluorescence fluctuation spectroscopy has become an important measurement tool for investigating molecular dynamics, molecular interactions, and chemical kinetics in biological systems. Although the basic theory of fluctuation spectroscopy is well established, it is not widely recognized that saturation of the fluorescence excitation can dramatically alter the size and profile of the fluorescence observation volume from which fluorescence fluctuations are measured, even at relatively modest excitation levels. A precise model for these changes is needed for accurate analysis and interpretation of fluctuation spectroscopy data. We here introduce a combined analytical and computational approach to characterize the observation volume under saturating conditions and demonstrate how the variation in the volume is important in two-photon fluorescence correlation spectroscopy. We introduce a simple approach for analysis of fluorescence correlation spectroscopy data that can fully account for the effects of saturation, and demonstrate its success for characterizing the observed changes in both the amplitude and relaxation timescale of measured correlation curves. We also discuss how a quantitative model for the observed phenomena may be of broader importance in fluorescence fluctuation spectroscopy.  相似文献   

5.

Background

Routine black box approaches quantify fluorescence intensity to profile the uptake of fluorophores, providing limited insight into microscopic events. Spatial intensity distribution analysis has previously been reported to quantify oligomerisation and number of particles from selected regions and profile intracellular distributions of labelled moieties.

Methods

In this study, the concentration and time-dependent behaviour of CellTrace™ calcein red-orange (AM) intracellular accumulation was examined in colorectal adenocarcinoma cell line and bovine aortic endothelial cells. Monolayers were subjected to fluorescence correlation spectroscopy, fluorescence intensity and SpIDA measurements to determine differences in the rate and extent of intracellular accumulation.

Results

Intracellular accumulation data derived from Spatial intensity distribution analysis were found to correlate with that of fluorescence correlation spectroscopy and fluorescence intensity profiles. The extent of intracellular accumulation was found to be time and concentration-dependent in both cell lines examined, with no significant differences in the rate of intracellular accumulation.

Conclusions

Spatial intensity distribution analysis applied at ‘proof of concept’ level is a rapid and user-friendly tool that can be applied to the quantification of intracellular concentration and kinetics of fluorophore uptake.

General significance

Confocal imaging as a routinely implemented tool for profiling fluorescently-labelled species is often under-exploited for yielding quantitative parameters.  相似文献   

6.
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules.  相似文献   

7.
R Brock  M A Hink    T M Jovin 《Biophysical journal》1998,75(5):2547-2557
Fluorescence correlation microscopy (FCM), the combination of fluorescence correlation spectroscopy (FCS) and digital microscopy (Brock and Jovin, 1998. Cell. Mol. Biol. 44:847-856), has been implemented for measuring molecular diffusion and association in living cells with explicit consideration of autocorrelations arising from autofluorescence. Autofluorescence excited at 532 nm colocalizes with mitochondria, has flavin-like spectral characteristics, exhibits relaxation times characteristic for the diffusion of high-molecular-weight proteins, and depends on the incubation conditions of the cells. These time- and location-dependent properties preclude the assignment of universal background parameters. The lower limit for detection of microinjected dextran molecules labeled with the carboxymethylindocyanine dye Cy3 was a few thousand molecules per cell, and the diffusion constant of 1.7 x 10(-7) cm2/s agreed well with values measured with other methods. Based on the fluorescence signal per molecule (fpm) and the molecule number derived from autocorrelation analysis, a new method is devised to define intracellular association states. We conclude that FCM is a powerful, noninvasive method for probing molecular interactions in femtoliter volume elements within defined subcellular locations in living cells.  相似文献   

8.
Fluorescence correlation spectroscopy and quantitative cell biology   总被引:2,自引:0,他引:2  
Fluorescence correlation spectroscopy (FCS) analyzes fluctuations in fluorescence within a small observation volume. Autocorrelation analysis of FCS fluctuation data can be used to measure concentrations, diffusion properties, and kinetic constants for individual fluorescent molecules. Photon count histogram analysis of fluorescence fluctuation data can be used to study oligomerization of individual fluorescent molecules. If the FCS observation volume is positioned inside a living cell, these parameters can be measured in vivo. FCS can provide the requisite quantitative data for analysis of molecular interaction networks underlying complex cell biological processes.  相似文献   

9.
10.
Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores. In this work, we combine pulsed interleaved excitation with fluctuation imaging methods (PIE-FI) such as raster image correlation spectroscopy (RICS) or number and brightness analysis (N&B). More specifically, we show that quantitative measurements of diffusion and molecular brightness of Venus fluorescent protein (FP) can be performed in solution with PIE-RICS and compare PIE-RICS with single-point PIE-FCS measurements. We discuss the advantages of cross-talk free dual-color PIE-RICS and illustrate its proficiency by quantitatively comparing two commonly used FP pairs for dual-color microscopy, eGFP/mCherry and mVenus/mCherry. For N&B analysis, we implement dead-time correction to the PIE-FI data analysis to allow accurate molecular brightness determination with PIE-NB. We then use PIE-NB to investigate the effect of eGFP tandem oligomerization on the intracellular maturation efficiency of the fluorophore. Finally, we explore the possibilities of using the available fluorescence lifetime information in PIE-FI experiments. We perform lifetime-based weighting of confocal images, allowing us to quantitatively determine molecular concentrations from 100 nM down to <30 pM with PIE-raster lifetime image correlation spectroscopy (RLICS). We use the fluorescence lifetime information to perform a robust dual-color lifetime-based FRET analysis of tandem fluorescent protein dimers. Lastly, we investigate the use of dual-color RLICS to resolve codiffusing FRET species from non-FRET species in cells. The enhanced capabilities and quantitative results provided by PIE-FI make it a powerful method that is broadly applicable to a large number of interesting biophysical studies.  相似文献   

11.
Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores. In this work, we combine pulsed interleaved excitation with fluctuation imaging methods (PIE-FI) such as raster image correlation spectroscopy (RICS) or number and brightness analysis (N&B). More specifically, we show that quantitative measurements of diffusion and molecular brightness of Venus fluorescent protein (FP) can be performed in solution with PIE-RICS and compare PIE-RICS with single-point PIE-FCS measurements. We discuss the advantages of cross-talk free dual-color PIE-RICS and illustrate its proficiency by quantitatively comparing two commonly used FP pairs for dual-color microscopy, eGFP/mCherry and mVenus/mCherry. For N&B analysis, we implement dead-time correction to the PIE-FI data analysis to allow accurate molecular brightness determination with PIE-NB. We then use PIE-NB to investigate the effect of eGFP tandem oligomerization on the intracellular maturation efficiency of the fluorophore. Finally, we explore the possibilities of using the available fluorescence lifetime information in PIE-FI experiments. We perform lifetime-based weighting of confocal images, allowing us to quantitatively determine molecular concentrations from 100 nM down to <30 pM with PIE-raster lifetime image correlation spectroscopy (RLICS). We use the fluorescence lifetime information to perform a robust dual-color lifetime-based FRET analysis of tandem fluorescent protein dimers. Lastly, we investigate the use of dual-color RLICS to resolve codiffusing FRET species from non-FRET species in cells. The enhanced capabilities and quantitative results provided by PIE-FI make it a powerful method that is broadly applicable to a large number of interesting biophysical studies.  相似文献   

12.
We have investigated spatial variations of the diffusion behavior of the green fluorescent protein mutant EGFP (F64L/S65T) and of the EGFP-beta-galactosidase fusion protein in living cells with fluorescence correlation spectroscopy. Our fluorescence correlation spectroscopy device, in connection with a precision x-y translation stage, provides submicron spatial resolution and a detection volume smaller than a femtoliter. The fluorescence fluctuations in cell lines expressing EGFP are caused by molecular diffusion as well as a possible internal and a pH-dependent external protonation process of the EGFP chromophore. The latter processes result in two apparent nonfluorescent states that have to be taken into account when evaluating the fluorescence correlation spectroscopy data. The diffusional contribution deviates from ideal behavior and depends on the position in the cell. The fluorescence correlation spectroscopy data can either be evaluated as a two component model with one fraction of the molecules undergoing free Brownian motion with a diffusion coefficient approximately five times smaller than in aqueous solution, and another fraction diffusing one or two orders of magnitude slower. This latter component is especially noticeable in the nuclei. Alternatively, we can fit the data to an anomalous diffusion model where the time dependence of the diffusion serves as a measure for the degree of obstruction, which is large especially in nuclei. Possible mechanisms for this long tail behavior include corralling, immobile obstacles, and binding with a broad distribution of binding affinities. The results are consistent with recent numerical models of the chromosome territory structure in the cell nucleus.  相似文献   

13.
The study of the dynamics of biological systems requires one to follow relaxation processes in time with micron-size spatial resolution. This need has led to the development of different fluorescence correlation techniques with high spatial resolution and a tremendous (from nanoseconds to seconds) temporal dynamic range. Spatiotemporal information can be obtained even on complex dynamic processes whose time evolution is not forecast by simple Brownian diffusion. Our discussion of the most recent applications of image correlation spectroscopy to the study of anomalous sub- or superdiffusion suggests that this field still requires the development of multidimensional image analyses based on analytical models or numerical simulations. We focus in particular on the framework of spatiotemporal image correlation spectroscopy and examine the critical steps in getting information on anomalous diffusive processes from the correlation maps. We point out how a dual space-time correlative analysis, in both the direct and the Fourier space, can provide quantitative information on superdiffusional processes when these are analyzed through an empirical model based on intermittent active dynamics. We believe that this dual space-time analysis, potentially amenable to mathematical treatment and to the exact fit of experimental data, could be extended to include the rich phenomenology of subdiffusive processes, thereby quantifying relevant parameters for the various motivating biological problems of interest.  相似文献   

14.
We characterize the molecular properties of autofluorescence and transiently expressed EGFP in the nucleus and in the cytoplasm of HeLa cells by fluorescence correlation spectroscopy (FCS) and by photon counting histogram (PCH) analysis. PCH has been characterized and applied in vitro, but its potential for in vivo studies needs to be explored. Thus, this study mainly focuses on the characterization of PCH analysis in vivo. The strength of PCH lies in its ability to distinguish biomolecules by their molecular brightness value. Because the concept of molecular brightness is crucial for PCH analysis, we study the molecular brightness of EGFP and determine the statistical accuracy of its measurement under in vivo conditions. We started by characterizing the influence of autofluorescence on EGFP measurements. We found a molecular brightness of EGFP that is a factor of 10 higher than the brightness of the autofluorescence. Moment analysis demonstrates that the contribution of autofluorescence to fluorescence fluctuation experiments is negligible at EGFP concentrations of one protein per excitation volume. The molecular brightness of EGFP measured in the nucleus, the cytoplasm, and in vitro are identical and our study demonstrates that molecular brightness is a very stable and predictable quantity for cellular measurements. In addition to PCH, we also analyzed the autocorrelation function of EGFP. The diffusion coefficient of EGFP is a factor of 3 lower in vivo than compared to in vitro, and a simple diffusion process describes the autocorrelation function. We found that in the nucleus the fluorescence intensity is stable as a function of time, while measurements in the cytoplasm display fluorescence intensity drifts that complicate the data analysis. We introduce and discuss an analysis method that minimizes the influence of the intensity drifts on PCH analysis. This method allows us to recover the correct molecular brightness of EGFP even in the presence of drifts of the fluorescence intensity signal. We found the molecular brightness of EGFP to be a very robust parameter, and anticipate the use of PCH analysis for the study of oligomerization processes in vivo.  相似文献   

15.
Single-point fluorescence correlation spectroscopy (FCS) allows measurements of fast diffusion and dynamic processes in the microsecond-to-millisecond time range. For measurements on living cells, image correlation spectroscopy (ICS) and temporal ICS extend the FCS approach to diffusion times as long as seconds to minutes and simultaneously provide spatially resolved dynamic information. However, ICS is limited to very slow dynamics due to the frame acquisition rate. Here we develop novel extensions to ICS that probe spatial correlations in previously inaccessible temporal windows. We show that using standard laser confocal imaging techniques (raster-scan mode) not only can we reach the temporal scales of single-point FCS, but also have the advantages of ICS in providing spatial information. This novel method, called raster image correlation spectroscopy (RICS), rapidly measures during the scan many focal points within the cell providing the same concentration and dynamic information of FCS as well as information on the spatial correlation between points along the scanning path. Longer time dynamics are recovered from the information in successive lines and frames. We exploit the hidden time structure of the scan method in which adjacent pixels are a few microseconds apart thereby accurately measuring dynamic processes such as molecular diffusion in the microseconds-to-seconds timescale. In conjunction with simulated data, we show that a wide range of diffusion coefficients and concentrations can be measured by RICS. We used RICS to determine for the first time spatially resolved diffusions of paxillin-EGFP stably expressed in CHOK1 cells. This new type of data analysis has a broad application in biology and it provides a powerful tool for measuring fast as well as slower dynamic processes in cellular systems using any standard laser confocal microscope.  相似文献   

16.
Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular parameters (e.g. diffusion coefficients, concentration and molecular interactions). As a result of various recent advances, this technique shows promise even for intracellular applications. Fluorescence imaging can reveal the spatial localization of fluorophores on nanometer length scales, whereas fluorescence resonance energy transfer supports a wide range of different applications, including real-time monitoring of conformational rearrangements (as in protein folding). Still in their infancy, single-molecule spectroscopic methods thus provide unprecedented insights into basic molecular mechanisms.  相似文献   

17.
Fluorescence correlation spectroscopy (FCS) analyzes spontaneous fluctuations in the fluorescence emission of small molecular ensembles, thus providing information about a multitude of parameters, such as concentrations, molecular mobility and dynamics of fluorescently labeled molecules. Performed within diffraction-limited confocal volume elements, FCS provides an attractive alternative to photobleaching recovery methods for determining intracellular mobility parameters of very low quantities of fluorophores. Due to its high sensitivity sufficient for single molecule detection, the method is subject to certain artifact hazards that must be carefully controlled, such as photobleaching and intramolecular dynamics, which introduce fluorescence flickering. Furthermore, if molecular mobility is to be probed, nonspecific interactions of the labeling dye with cellular structures can introduce systematic errors. In cytosolic measurements, lipophilic dyes, such as certain rhodamines that bind to intracellular membranes, should be avoided. To study free diffusion, genetically encoded fluorescent labels such as green fluorescent protein (GFP) or DsRed are preferable since they are less likely to nonspecifically interact with cellular substructures.  相似文献   

18.
Recent developments in the understanding of molecular diffusion phenomena in membranes are reviewed. Both model bilayers and biological membranes are considered in respect of lateral diffusion, rotational diffusion and transverse diffusion (flip-flop). For model systems, particular attention is paid to recent data obtained using surface-specific techniques such as sum frequency generation vibrational spectroscopy on supported lipid bilayers, and fluorescence correlation spectroscopy on giant unilamellar vesicles, both of which have yielded new insights into the intrinsic rates of diffusion and the energetic barriers to processes such as lipid flip-flop. Advances in single-molecule and many-molecule fluorescence methodologies have enabled the observation of processes such as anomalous diffusion for some membrane species in biological membranes. These are discussed in terms of new models for the role of membrane interactions with the cytoskeleton, the effects of molecular crowding in membranes, and the formation of lipid rafts. The diffusion of peptides, proteins and lipids is considered, particularly in relation to the means by which antimicrobial peptide activity may be rationalized in terms of membrane poration and lipid flip-flop.  相似文献   

19.
Dual-color fluorescence correlation spectroscopy is a biophysical technique that enables precise and sensitive analyzes of molecular interactions. It is unique in its ability to analyze reactions in real time at nanomolar substrate concentrations and below, especially when applied to the monitoring of enzyme-catalyzed reactions. Furthermore, it offers a wide range of accessible reactions, restricted only by the prerequisite that a chemical bond or a physical interaction between two spectrally distinguishable fluorophores is established or broken. Recently, the optical setup of dual-color fluorescence correlation spectroscopy has been extended toward two-photon excitation, resulting in several advantages compared with standard excitation, such as lower fluorescence background, an even larger spectrum of potential fluorescence dyes to be used, as well as a more stable and simplified optical setup. So far, the method has been successfully employed to analyze the kinetics of nucleic acid and peptide modifications catalyzed by nucleases, polymerases, and proteases.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is a powerful technique to study dynamic biomolecular processes. It allows the estimation of concentrations, diffusion coefficients, molecular interactions, and other processes causing fluctuations in the fluorescence intensity, thus yielding information about aggregation processes, enzymatic reactions, or partition coefficients. During the last years, FCS has been successfully applied to model and cellular membranes, proving to be a promising tool for the study of membrane dynamics and protein/lipid interactions. Here we describe the theoretical basis of FCS and some practical implications for its application in membrane studies. We discuss sources of potential artifacts, such as membrane undulations, positioning of the detection volume, and photobleaching. Special attention is paid to aspects related to instrumentation and sample preparation as well as data acquisition and analysis. Finally, we comment on some strategies recently developed for the specific improvement of FCS measurements on membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号