首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   

2.
We examined the effects of nedocromil sodium, a new drug developed for the treatment of reversible obstructive airway disease, on allergen-induced early and late bronchial responses and the development of airway hyperresponsiveness 24 h after challenge in nine allergic sheep. On occasions greater than 2 wk apart the sheep were treated with 1) placebo aerosol (buffered saline) before and 3 h after antigen challenge, 2) an aerosol of nedocromil sodium (1 mg/kg in 3 ml buffered saline) before antigen challenge and placebo 3 h after challenge, and 3) placebo aerosol before and nedocromil sodium aerosol 3 h after challenge. Early and late bronchial responses were determined by measuring specific lung resistance (sRL) before and periodically after challenge. Airway responsiveness was assessed by determining from dose-response curves the carbachol concentration (in % wt/vol) that increased sRL to 5 cmH2O/s. In the placebo trial, antigen challenge resulted in early and late increases in sRL over a base line of 353 +/- 32 and 131 +/- 17% (SE), respectively. Both early and late increases in sRL were blocked (P less than 0.05) when the sheep were pretreated with nedocromil sodium. When nedocromil was given after the early response, the late response was reduced significantly. Eight of nine sheep developed airway hyperresponsiveness 24 h after antigen challenge. In these eight sheep, carbachol concentration before antigen challenge was 2.6 +/- 0.3%, 24 h later carbachol concentration was significantly lower (1.8 +/- 0.3%). Both nedocromil sodium treatments blocked (P less than 0.05) this antigen-induced airway hyperresponsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We determined whether platelet-activating factor (PAF) plays a role in allergen-induced airway responses by studying the effects of a selective PAF antagonist WEB-2086 on antigen-induced early and late airway responses in allergic sheep. In seven sheep, inhaled Ascaris suum produced significant early (282%) and late (176%) increases in specific lung resistance (sRL). WEB-2086 (1 mg/kg iv) given 20 min before antigen challenge did not affect the early response, but the peak late increase in sRL was only 37% over base line (P less than 0.05 vs. control). To study the mechanism by which PAF contributes to antigen-induced responses, we evaluated the effects of pharmacological probes on PAF-induced bronchoconstriction. Inhaled PAF (dose range 75-700 micrograms) caused reproducible (r = 0.781, P less than 0.05) increases in sRL in eight sheep. The PAF-induced bronchoconstriction was blocked by WEB-2086 (1 mg/kg iv) and by the leukotriene antagonist FPL-55712 (30 mg by aerosol); however, neither the cyclooxygenase blocker indomethacin (2 mg/kg iv) nor the histamine H1-antagonist chlorpheniramine (2 mg/kg iv) blocked the PAF response. WEB-2086, however, did not block bronchoconstriction induced by aerosol leukotriene D4, indicating that PAF acts indirectly through leukotrienes. Finally, we determined whether PAF could induce late airway responses. Inhaled PAF produced an immediate increase in sRL in all seven sheep tested, but late airway responses were observed in only three of the seven sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We determined the effect of aerosol challenge with leukotriene D4 (LTD4) on specific lung resistance (sRL) and tracheal mucous velocity (TMV) in conscious sheep with (allergic) and without (nonallergic) Ascaris suum hypersensitivity. In allergic sheep LTD4 in concentrations of 50, 100, and 150 micrograms/ml produced dose-dependent increases in mean sRL by 44 (P = NS), 154 (P less than 0.05), and 233% (P less than 0.05), respectively. The increase in sRL produced by 150 micrograms/ml LTD4 was prevented by FPL 55712, an antagonist of slow-reacting substance of anaphylaxis. In nonallergic sheep 150 micrograms/ml LTD4 failed to elicit a significant change in sRL. In contrast to the changes in airway mechanics, concentrations of LTD4 as low as 25 micrograms/ml produced significant decreases in TMV in allergic sheep. The maximum decrease in TMV at this dose occurred 2 h after challenge; with larger doses of LTD4 (100 and 150 micrograms/ml) the maximum effect was observed 3 h after challenge. Furthermore, 150 micrograms/ml LTD4 reduced TMV in nonallergic sheep (mean decrease 43%, P less than 0.05). FPL 55712 only had a minor effect on the LTD4-induced decreases in TMV. We conclude that allergic sheep exhibit greater airway responsiveness to inhaled LTD4 than nonallergic sheep but that this difference is not evident for the concomitant changes in mucociliary transport. This suggests that the allergic state is associated with an increased responsiveness to LTD4 in tissues controlling airway caliber but not in those contributing to mucociliary function.  相似文献   

5.
In this study we examined the effects of a new orally active leukotriene (LT) D4 receptor antagonist, WY-48,252 (1,1,1-trifluoro-N-[3-(2-quinolinylmethoxy)phenyl]methanesulfonamide), on LTD4-induced bronchoconstriction and antigen-induced early and late responses in allergic sheep. For all studies WY-48,252 10 mg/kg, was administered via intragastric tube 1 h prior to airway challenge. In seven sheep, airway challenge with LTD4 [delivered dose mean +/- SE, 53 +/- 2 micrograms] resulted in an immediate increase in SRL to 600 +/- 18% over baseline. When these same sheep were treated with WY-48,252, airway challenge with LTD4 (delivered dose, 61 +/- 5 micrograms) resulted in only a 220 +/- 50% increase in SRL (p less than 0.05 vs placebo). The drug had no effect on baseline SRL. WY-48,252 was also effective in reducing early responses and blocking late responses to inhaled antigen in allergic sheep (n = 7). In the control trial, airway challenge with Ascaris suum antigen resulted in immediate and late (i.e. 6-8 h) increases in SRL of 499% and 138% over baseline (both responses, p less than 0.05). When these same sheep were pretreated with WY-48,252 the immediate antigen-induced increase in SRL was 171% and the late response was 49% over baseline (both responses p less than 0.05 vs control). These results indicate that WY-48,252 is a LTD4 antagonist in allergic sheep. The ability of this compound to modify antigen-induced early responses and to block antigen-induced late responses suggests that the generation of LTD4 during airway anaphylaxis contributes to both responses.  相似文献   

6.
Intratracheal instillation of platelet-activating factor (PAF) in sheep produces bronchoconstriction and airway hyperresponsiveness (AHR) by a two-stage process that involves the initial stimulation of PAF receptors followed by the secondary generation of proinflammatory mediators. Because the biological effects of PAF may be mediated by these proinflammatory metabolites, it is possible that a steroidal anti-inflammatory agent would modify the airway responses of PAF. We measured specific lung resistance (sRL) in sheep (n = 11) before, immediately after, and serially for up to 2 h after intratracheal instillation of PAF (30 micrograms/kg). Airway responsiveness was measured 2 h post-PAF when sRL had returned to baseline and was expressed as the cumulative provocating dose of carbachol that increased sRL to 4 l.cmH2O.l-1.s (PD4). PD4 was determined on a control day and on different experiment days without or after treatment with intravenous methylprednisolone (MPS; 1 mg/kg) administered 3 h before (n = 6), 20 min before PAF (n = 7), or 20 min after PAF challenge (n = 7). PAF increased sRL by 222 +/- 44% (SE) above baseline and decreased PD4 of carbachol by 44 +/- 5% (P less than 0.05). Pretreatment (both 3 h and 20 min) with MPS attenuated the PAF-induced increases in sRL, whereas its administration 20 min post-PAF had no effect. Irrespective of the effects on sRL, MPS administration inhibited the PAF-induced AHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Immunologic degranulation of airway mast cells after antigen inhalation produces early and late airway obstructions in allergic sheep. In this study we determined whether nonimmunologic degranulation of airway mast cells by inhalation of compound 48/80 had similar effects. In five sheep, pulmonary flow resistance (RL), thoracic gas volume (Vtg), and arterial O2 tension (Pao2) were determined prior to and at predetermined times after inhalation of 48/80 aerosol. Immediately after challenge mean specific lung resistance (sRL = RL X Vtg) increased by 259% and mean Pao2 decreased by 29%. All values returned to normal by 3 h. By 5-h postchallenge sRL again increased significantly; this second increase in sRL (92% above base line) was maximal at 7 h and was accompanied by a 17% drop in Pao2. In these same sheep inhalation of Ascaris suum antigen produced comparable early changes in sRL, but the onset of the late response was somewhat delayed and more pronounced. In a second group of sheep (n = 5), pretreatment with the mast cell stabilizer cromolyn sodium prevented both early and late responses by compound 48/80. Pretreatment with the histamine H1-antagonist chlorpheniramine had no significant effect on either response, whereas pretreatment with FPL 55712, an antagonist of slow-reacting substance of anaphylaxis (SRS-A), slightly but not significantly attenuated the early response and completely prevented the late response. We conclude that, like immunologic stimuli, nonimmunologic mast cell degranulation produces early and late bronchial obstructions in allergic sheep; that these responses are mediator dependent; and that while histamine and SRS-A contribute to the early response, it is the early appearance of SRS-A which is an important prerequisite for the late response.  相似文献   

8.
Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2, 500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and "non-anticoagulant" fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered "after" the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D(4), excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled "fractionated" heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.  相似文献   

9.
Leukotriene (LT) D4 is a putative mediator of allergic asthma: inhaled LTD4 produces early and late increases in specific lung resistance (SRL) and slows tracheal mucus velocity (TMV) similar to inhaled antigen. In this study we examined the effects of an orally active LTD4/LTE4 antagonist, LY171883 [1-less than 2-Hydroxy-3-propyl-4-less than 4-(1H-Tetrazol-5-yl) Butoxy greater than Phenyl greater than Ethanone], on early and late changes in SRL and TMV following airway challenge with Ascaris suum antigen in conscious allergic sheep. SRL and TMV were measured before and up to 8 h and 24 h after antigen challenge after either LY171883 (30 mg/kg, p.o. 2 h before challenge) or placebo pretreatment. After placebo pretreatment antigen challenge resulted in significant early (483% over baseline) and late (221% over baseline) increases in SRL (n = 9). LY171883 pretreatment, however, significantly reduced the early increase in SRL (163% over baseline) and blocked the late response. LY171883 did not prevent the antigen-induced fall in TMV from 5-8 h post challenge (n = 6), but TMV recovered more rapidly in the drug trial returning to baseline values by 24 h. These results suggest that the generation of LTD4, and its metabolite LTE4, during airway anaphylaxis contributes to the early increase in SRL and is important for eliciting the late increase in SRL as well as contributing to the fall in TMV.  相似文献   

10.
Allergic sheep respond to inhaled Ascaris suum antigen with either acute and late bronchial obstructions (dual responders) or only acute bronchoconstriction (acute responders). In this study we tested the hypothesis that one factor which may distinguish between these two populations is the difference in sensitivity to a specific mediator of airway anaphylaxis, leukotriene (LT) D4 (a major component of slow reacting substance of anaphylaxis). We postulated that if the hypothesis was correct then dual responders should demonstrate increased airway responses to inhaled LTD4 and that this increased responsiveness should also be reflected by a more severe response to inhaled antigen. To test this we used animals from both groups with the same degree of non-specific airway responsiveness to carbachol and determined their airway responses to controlled inhalation challenges with synthetic LTD4 and Ascaris suum antigen. Airway responsiveness to carbachol was determined by measuring the change in specific lung resistance (SRL) to increasing concentrations of carbachol aerosol, and then identifying, by linear interpolation, the provocative carbachol concentration which produced a 150% increase (PC150) in SRL. Airway responses to LTD4, and antigen were determined by measuring the percentage change in SRL after a controlled inhalation challenge with either aerosol. Airway responsiveness to carbachol was not different between the two groups. There was, however, a difference (p less than 0.05) in the airway response to the same dose of LTD4 in the two groups. Dual responders showed a 297 +/- 72% increase in SRL as compared to a 90 +/- 13% increase in SRL in the acute responders. Dual responders also showed a greater immediate and more prolonged response to antigen than did acute responders. These results suggest that increased responsiveness to LTD4 may be one factor which may distinguish dual responders from acute responders.  相似文献   

11.
We tested the hypothesis that prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity, possibly via a cyclooxygenase-dependent mechanism. In 15 sheep, specific lung resistance (sRL) was measured before and after 30 min of exposure to either air or a hypoxic gas mixture (13% O2). The sheep then inhaled 50 breaths of aerosolized 5% histamine solution (n = 9) or 10 breaths of 2.5% carbachol solution (n = 9), and measurements of sRL were repeated. On subsequent days the above protocols were repeated after a 30-min exposure to hyperoxia (O2 greater than or equal to 95%), without or after pretreatment with indomethacin (2 mg/kg). After air-sham exposure, carbachol and histamine increased mean sRL to 370 +/- 40 (SE) and 309 +/- 65% of baseline, respectively. Exposure to the hypoxic gas mixture had no effect on baseline sRL but enhanced the airway responsiveness to carbachol and histamine; mean sRL increased to 740 +/- 104 and 544 +/- 76% of baseline, respectively (P less than 0.05). Prior 30-min exposure to hyperoxia prevented the hypoxia-induced enhancement of bronchial reactivity to carbachol (sRL = 416 +/- 66% of baseline) and histamine (sRL = 292 +/- 41% of baseline) without affecting the airway responsiveness to these agents after air. Pretreatment with indomethacin did not reverse the protective effects of hyperoxia or the hypoxia-induced enhancement of bronchial reactivity. We conclude that 1) prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity and 2) neither the protective effects of hyperoxia nor the hypoxia-induced enhancement of bronchial reactivity is mediated via a cyclooxygenase-dependent mechanism.  相似文献   

12.
The role of leukotriene D4 (LTD4) as a mediator of immediate hypersensitivity reactions in the guinea-pig conjunctiva was examined using a potent, second-generation LTD4 receptor antagonist, MK-571 (also known as L-660,711). The microvascular permeability changes in the guinea-pig conjunctiva following challenge with either LTD4 or antigen were measured through accumulation of intravenously administered 99mtechnetium-labeled albumin. Topical application of MK-571 (up to 2 h pretreatment) significantly inhibited the conjunctival responses to LTD4 (ED50 of 18-60 ng/eye) but not to histamine. The responses to a single topical antigen challenge in ovalbumin-sensitized guinea pigs were significantly inhibited (44%) by topical treatment with MK-571, in contrast to the lack of effect previously observed with prototypic antagonists. The inhibitory effects of MK-571 did not involve an action on conversion of [3H]LTC4 to LTD4 and LTE4. Following a second antigen challenge (24 h after the first), MK-571 inhibited the resultant permeability changes by 78%. Specific histamine H1 and H2 antagonists similarly inhibited the responses to the first and second challenges (63 and 74%, respectively). The present study suggests that LTD4 is involved in conjunctival hypersensitivity reactions and that potent LTD4 receptor antagonists may be of therapeutic value in the treatment of allergic conjunctivitis.  相似文献   

13.

Background

Previous studies showed that heparin''s anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of <2500 daltons.

Objective

To investigate the structural sequence of heparin''s anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep.

Methods

Allergic sheep without (acute responder) and with late airway responses (LAR; dual responder) were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR) to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment.

Results

The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4), and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4)GlcNS6S (1→4) IdoU2S (1→4) AMan-6S]) which lacked anti-coagulant activity.

Conclusions

These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic and anti-coagulant activity are distinctly different.  相似文献   

14.
To determine whether tracheal narrowing accompanies histamine-induced bronchoconstriction and whether a cholinergic reflex is involved in the tracheal and bronchial responses, we determined specific pulmonary resistance between the carina and the pleura (sRL) and tracheal volume (Vtr) with an indicator-dilution technique in conscious sheep. Immediately postdelivery of histamine aerosol (7.5 mg histamine base) mean sRL increased by 223% (P less than 0.05), and mean Vtr decreased by 25% (P less than 0.05). The duration of the changes was similar, with a return to base-line values within 60 min. With increasing doses of histamine up to 30 mg, there was a corresponding increase in mean sRL, whereas the maximum effect on Vtr was already reached after 7.5 mg of histamine. Atropine (0.2 mg/kg iv) increased mean Vtr by 77% (P less than 0.05) and blunted the histamine effects on sRL, whereas the histamine effects on Vtr were abolished. Intravenous histamine or carbachol aerosol had similar effects on sRL and Vtr. We conclude that in conscious sheep 1) histamine produces both tracheal and bronchial constriction with a similar time course, 2) there is a base-line vagal tone in the trachea and not the bronchi, 3) the cholinergic reflex component of histamine-induced constriction is greater in the trachea than the bronchi, and 4) this difference between the trachea and bronchi is not due to differential aerosol deposition or cholinergic responsiveness.  相似文献   

15.
Some allergic sheep respond to inhalation of Ascaris suum antigen with both immediate and late increases in airflow resistance (late response). The mechanism of the late response is unknown but recent evidence suggests that the initial generation of slow-reacting substance of anaphylaxis (SRS-A) immediately after antigen challenge is a necessary pre-requisite for the physiologic expression of this late response. Based on this evidence we hypothesized that airway challenge with leukotriene D4 (LTD4), an active component of SRS-A would produce acute and late airway responses in allergic sheep similar to those observed with antigen. In five allergic sheep with documented early and late pulmonary responses to Ascaris suum antigen, inhalation of leukotriene D4 aerosol (delivered dose (mean +/- SE) 0.55 +/- 0.08 ug) resulted in significant early and late increases in specific lung resistance (SRL). In three allergic sheep which only demonstrated acute responses to antigen, LTD4 aerosol (delivered dose 0.59 +/- 0.09 ug) only produced an acute increase in SRL. In the late responders pretreatment with aerosol cromolyn sodium (1 mg/kg) did not affect the acute response but blunted the late increase in SRL. Pretreatment with aerosol FPL-57231 (1% w/v solution) completely blocked both the acute and late responses. These data support the hypothesis that initial release of LTD4 in the airways of sensitive animals is important for the physiologic expression of the late response.  相似文献   

16.
Leukotriene (LT) D4 is a putative mediator of allergic asthma: inhaled LTD4 produces early and late increases in specific lung resistance (SRL) and slows tracheal mucus velocity (TMV) similat to inhaled antigen. In this study we examined the effects of an orally active LTD4/LTE4 antagonist, LY171883 [1-<2-Hydroxy-3-propyl-4-<4-(1H-Tetra-zol-5-yl) Butoxy>Phenyl>Ethanonel], on early and late changes in SRL and TMV following airway challenge with antigen in conscious allergic sheep. SRL and TMV were measured before and up to 8 h and 24 h after antigen challenge after either LY171883 (30 mg/kg, p.o. 2 h before challenge) or placebo pretreatment. After placebo pretreatment antigen challenge resulted in significant early (483% over baseline) and late (221% over baseline) increases in SRL (n=9). LY171883 pretreatment, however, significantly reduced the early increase in SRL (163% over baseline) and blocked the late response. LY171883 did not prevent the antigen-induced fall in TMV from 5–8 h post challenge (n=6), but TMV recovered more rapidly in the drug trial returning to baseline values by 24 h. These results suggest that the generation of LTD4, and its metabolite LTE4, during airway anaphylaxis contributes to the early increase in SRL and is important for eliciting the late increase in SRL as well as contributing to the fall in TMV.  相似文献   

17.
In this study we examined the effects of an orally active leukotriene (LT) antagonist YM-16638 [[5-[[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)propyl]thio]-1,3,4- thiadiazol-2-yl]thio] acetic acid on antigen-induced early and late responses in allergic sheep. For all studies YM-16638 was administered via intragastric tube 1 h before airway challenge with Ascaris suum antigen. Six allergic sheep were challenged on four occasions (2 control and 2 drug trials) each greater than or equal to 14 days apart and the tests were conducted in the following order: control-1; YM-16638 30 mg/kg; control-2; YM-16638 10 mg/kg. Specific lung resistance (SRL) was used as an index of the airway response to antigen and was measured before and serially after antigen challenge. In both control trials antigen challenge resulted in significant early and late airway responses (i.e. increases in SRL); however, there was a significant difference between the peak late increases of SRL in control-1 (206%) and control-2 (115%) suggesting a carry-over effect of the 30 mg/kg dose of YM-16638. At both doses, YM-16638 reduced the early response and blocked the late response when compared to either control trial. These results suggest that sulfidopeptide LTs contribute to both antigen-induced early and late airway responses in allergic sheep.  相似文献   

18.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

19.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

20.
We report the identification of an EST encoding a murine cysteinyl leukotriene (mCysLT) receptor. LTD4, LTC4 and LTE4 but not LTB4 or various nucleotides activated Ca2+-evoked Cl- currents in mCysLT1 expressing Xenopus laevis oocytes. The response to LTD4 was blocked by MK-571, reduced by pretreatment with pertussis toxin (PTX), and was partly dependent on extracellular Ca2+. The identified murine CysLT1 receptor differs from the hCysLT1 receptor with regard to PTX sensitivity, receptor-mediated Ca2+ influx, and antagonist sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号