首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using metabolic labelling and sucrose density fractionation we compared the synthesis of lysozyme and lysosomal enzymes in human monocytic U937 cells. In pulse-chase experiments in sucrose density gradients, the intracellular radioactively labelled lysozyme distributed similarly to cathepsin D and beta-hexosaminidase. With the aid of immunochemical detection in Western blots, the steady-state distribution of lysozyme was found to be slightly different from that of beta-hexosaminidase; relatively more lysozyme was present in fractions sedimenting between lysosomes and the Golgi apparatus. The observed distribution of the lysozyme antigen with a prominent peak in the lysosomal fraction was in striking contrast to the broad distribution of the lysozyme activity. The difference was explained by a bias in the determination of the activity of lysozyme by the 'lysoplate' diffusion assay.  相似文献   

2.
Processing and transport of lysosomal enzymes in human monocyte line U937   总被引:1,自引:0,他引:1  
Precursors of cathepsin D and beta-hexosaminidase synthesized in the U937 monocyte line are processed to mature forms with similar kinetics as in fibroblasts. In U937 cells the processing of the precursor of the beta-chain of beta-hexosaminidase, however, results in a larger fragment that resembles a processing intermediate in fibroblasts. This difference is explained by differences in the equipment of the cells with proteinases, since cross-feeding of the precursors to the cells results in a processing characteristic for the recipient cell type. In sucrose gradients the precursors are found partly in a low- and partly in a high-density region. Mature polypeptides and activity of lysosomal enzymes fractionate mainly in the higher density region. In U937 cells the transport and maturation of endogenous lysosomal enzymes are less sensitive to bases (NH4Cl, chloroquine, tilorone) and to antibody against the mannose 6-phosphate specific receptors than in fibroblasts. A small portion of enzymes released from U937 cells contains the markers recognized by the mannose-6-phosphate specific receptors. U937 cells express these receptors and utilize them for transport of endogenous and exogenous lysosomal enzymes. It appears, however, that a fraction of lysosomal enzymes is transported in U937 cells independent of the mannose-6-phosphate-specific receptors.  相似文献   

3.
The nature and function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase, have been investigated in cultured human skin fibroblasts. Glucocerebrosidase is synthesised as a 62.5-kDa precursor with high-mannose-type oligosaccharide chains and an apparent native isoelectric point of 6.0-7.0. Subsequent processing of the oligosaccharide moieties to sialylated complex-type structures results in formation of 65-68-kDa forms of the enzyme with apparent native isoelectric points of 4.3-5.0. These forms are transported to lysosomes and subsequently modified by the sequential action of lysosomal exoglycosidases, finally resulting in a 59-kDa form with an isoelectric point near neutrality. The existence of oligosaccharide modification of the enzyme in the lysosomes is illustrated by the accumulation of different intermediate forms of glucocerebrosidase in mutant cell lines deficient in lysosomal exoglycosidases. The enzyme does not undergo proteolytic modification during maturation. The possible physiological relevance of the oligosaccharide modification of glucocerebrosidase in the lysosomes was investigated by studying the properties of the enzyme in fibroblasts deficient in lysosomal exoglycosidases, and also the properties of homogeneous pure glucocerebrosidase from placenta, modified in the oligosaccharide moieties by digestion in vitro with glycosidases. Modification of the oligosaccharide moieties of glucocerebrosidase had no significant effect on the catalytic activity of the enzyme as measured with either artificial or natural substrates in the presence of artificial or natural activators. There was also no effect of modification of the oligosaccharide chains on the intracellular stability of the enzyme or on its apparent hydrophobicity. We conclude that oligosaccharide modification of glucocerebrosidase in the lysosomes simply reflects further maturation of the enzyme in the lysosome and is of no importance to its function.  相似文献   

4.
We have employed colloidal silica (Percoll) density-gradient subcellular fractionation technique to examine the distribution of lysosomal hydrolases between intermediate vesicles (primary lysosomes) and secondary lysosomes in contact-inhibited non-proliferating vs proliferating chicken embryo fibroblasts. We find that the activities of lysosomal specific enzymes from both phases of growth are distributed within two peaks; however, the relative amounts differ markedly. In normal, non-proliferating cells approx. 60% of the total activities of cathepsin B, beta-mannosidase, alpha-fucosidase, beta-galactosidase and hexosaminidase is recovered in the heavier density fraction corresponding to secondary lysosomes, while less than 9% of the enzyme activities are recovered in the light-density peak. With transformed cells, between 16 and 22% of activity for these enzymes are recovered in the lighter density intermediate vesicle fraction, when less than 40% of the enzyme activities recovered in the heavy density fraction. beta-Glucuronidase distribution was different from that of the above enzymes. First, a more even distribution between the two lysosomal fractions was found with non-proliferating normal cells (33% in heavy-density fraction and 21% in light-density fraction), whereas more than 40% of the total enzyme activity was recovered in the lighter density fraction from transformed cells. Also, the amount of cathepsin B contained in the vesicle fractions is increased severalfold relative to that of contact-inhibited normal cells. However, the apparent differences in enzyme distribution between confluent normal and transformed cells are not found when vesicles are prepared from subconfluent, actively proliferating cultures. We have also compared the Percoll density gradient patterns of membrane vesicles from proliferating and non-proliferating human fibroblasts, since most earlier studies utilized this system. Again, we find that the majority of beta-hexosaminidase activity (41%) of contact-inhibited, confluent cells is recovered in the heavier density fraction with less than 15% in the lighter density fraction. Also, the distribution of beta-hexosaminidase between the heavy density and light density vesicle fractions is altered in homogenates from exponentially growing cells, being 22% and 26% respectively. We conclude that the distribution of lysosomal hydrolases between the two vesicle populations is growth-phase dependent and is markedly heterogeneous in proliferating cells.  相似文献   

5.
Biochemical evidence for an endocytically inactive population of lysosomes   总被引:1,自引:0,他引:1  
The peroxidase dependent, diaminobenzidine (DAB) density shift procedure was applied to the characterization of lysosomes from Chinese hamster ovary (CHO) cells. Peroxidase activity was localized in lysosomes by a 15-18 h internalization period. After treatment with DAB, the distribution of peroxidase activity in Percoll gradients was shifted, as a population, to a higher density. A bimodal distribution which included a low density population was observed for the native lysosomal enzyme beta-hexosaminidase after DAB treatment. A second lysosomal enzyme, alpha-fucosidase, was strongly inhibited by DAB treatment with the residual activity corresponding in distribution to the light beta-hexosaminidase population. The occurrence of a low density lysosomal population after the DAB procedure suggests the existence of an endocytically inactive lysosomal population in fibroblasts. Probable physiological candidates for such a population are discussed.  相似文献   

6.
Lysosomal enzymes require a mannose 6-phosphate recognition marker, constructed on asparagine-linked oligosaccharide chains, for targeting to lysosomes. We have identified the glycosylation sites of human beta-hexosaminidase B and have determined the influence of individual oligosaccharides on the phosphorylation, lysosomal targeting, and catalytic activity of the enzyme. The five potential glycosylation sites of the hexosaminidase beta-chain were modified individually by site-directed mutagenesis, and the constructs were expressed in COS 1 cells. By this analysis, we determined that four of the five potential sites were glycosylated. Two of the four oligosaccharides were preferentially phosphorylated. The absence of these two preferentially phosphorylated oligosaccharides resulted in greatly reduced amounts of the lysosomal form of the enzyme with increased secretion into the medium. The catalytic activity of beta-hexosaminidase B was not significantly altered by the absence of individual oligosaccharides suggesting the folding and assembly of the enzyme was not disrupted.  相似文献   

7.
Using metabolic labelling and sucrose density fractionation we compared the synthesis of lysozyme and lysosomal enzymes in human monocytic U937 cells. In pulse-chase experiments in sucrose density gradients, the intracellular radioactively labelled lysozyme distributed similarly to cathepsin D and β-hexosaminidase. With the aid of immunochemical detection in Western blots, the steady-state distribution of lysozyme was found to be slightly different from that of β-hexosaminidase; relatively more lysozyme was present in fractions sedimenting between lysosomes and the Golgi apparatus. The observed distribution of the lysozyme antigen with a prominent peak in the lysosomal fraction was in striking contrast to the broad distribution of the lysozyme activity. The difference was explained by a bias in the determination of the activity of lysozyme by the ‘lysoplate’ diffusion assay.  相似文献   

8.
Human lysosomal beta-hexosaminidase exists in two major forms: the A isoform is composed of both alpha and beta chains, while the B form is a homopolymer of beta chains. Deficiency of beta-hexosaminidase underlies the GM2 gangliosidoses. We have produced active beta-hexosaminidase B in cultured insect (Sf9) cells by isolation of a recombinant insect virus (baculovirus) containing the cDNA for the beta chain within the viral polyhedron gene and infection of Sf9 cells with this construct. That portion of the enzyme secreted into the medium, 50%, was purified with concanavalin A Sepharose and subsequent affinity chromatography to yield beta-hexosaminidase B that is 75% pure. The product has an N-terminal amino acid sequence, specific activity, and size (M(r) 62,000) similar to that of the enzyme present in cultured human fibroblasts. However, endo H sensitivity studies revealed that the oligosaccharide structures present on recombinant beta-hexosaminidase B differ from those found on the enzyme synthesized in the human system. In addition, these structures lack the mannose 6-phosphate recognition marker that targets degradative hydrolases to lysosomes. Despite these differences, recombinant beta-hexosaminidase B does serve as a specific substrate for the mannose phosphorylating enzyme, N-acetylglucosaminyl phosphotransferase. Furthermore, the oligosaccharide moieties phosphorylated in vitro match those phosphorylated in vivo, pointing to the conformational integrity of the recombinant enzyme. Generous amounts of easily obtained, easily purified, and properly folded beta-hexosaminidase B will facilitate physical structural analysis of the enzyme.  相似文献   

9.
Human urine contains a soluble form of glucocerebrosidase, an enzyme associated with the lysosomal membrane in cells and tissues. Urinary glucocerebrosidase is identical to the enzyme extracted from tissues with respect to the following parameters: Km for natural and artificial substrates, inhibition by conduritol B-epoxide, and stimulation by taurocholate. The enzyme is greater than 90% precipitable by polyclonal anti-(placental glucocerebrosidase) antiserum. Upon isoelectric focussing of urinary glucocerebrosidase multiple peaks of activity were observed. Partial deglycosylation (removal of sialic acid, N-acetylglucosamine and galactose) of the urinary enzyme increased the isoelectric point to a value identical to that of the main form found after partial deglycosylation of the placental enzyme. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate followed by immunoblotting, the immunopurified urinary enzyme shows the same molecular mass forms as the enzyme immunopurified from brain and kidney. In placenta the apparent molecular mass is somewhat higher but upon removal of sialic acid, N-acetylglucosamine and galactose the urinary and the placental enzyme show identical molecular masses of 57 kDa. We conclude that the enzymes extracted from urine and tissue are identical and that differences in apparent molecular mass and isoelectric point are probably due to heterogeneity in the oligosaccharide moieties of the molecules.  相似文献   

10.
The uncovering ratio of phosphate groups in lysosomal enzymes is defined as the percentage of phosphomonoester groups in the oligosaccharide side chains based on the sum of phosphomonoester and phosphodiester groups. Using a new procedure for the specific and complete hydrolysis of uncovered phosphomonoester groups in denatured immunoprecipitates of human cathepsin D, we show that the uncovering ratio varies between different forms of the enzyme and may be used as an indicator of the maturation of its carbohydrate side chains. The uncovering ratio in the total (cellular and secreted) cathepsin D from U937 promonocytes is greater than 95%. It is only slightly decreased in cells incubated in the presence of 1 alpha,25-dihydroxycholecalciferol, in which the rate of synthesis of cathepsin D is several times higher than in the control cells. In U937 cells and also in fibroblasts, the uncovering is nearly complete in intermediate and mature forms of the intracellular cathepsin D but less extensive in the intracellular and secreted precursor. In both cell types, incubation with 10 mM NH4Cl results in a decrease in the uncovering ratio of total cathepsin D. However, the activity of the uncovering enzyme, N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, as determined with UDP-N-acetylglucosamine is not affected with up to 60 mM NH4Cl. Our results suggest that NH4Cl, in addition to its known effects on the acidic-pH-dependent functions of lysosomal compartments and of mannose-6-phosphate receptors, impairs the processing or transport of lysosomal enzyme precursors at, or proximally to, the site of the uncovering of their mannose-6-phosphate residues.  相似文献   

11.
A lysine-rich area in the beta subunit of beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52) homologous to residues 189-203 in Cathepsin D, previously proposed as being critical for efficient lysosomal targeting, was identified. In vitro mutagenesis of the Lys residues was followed by COS-1 cell expression of enzymatic activity. The intracellular mutant beta-hexosaminidase B activity had a T1/2 at 60 degrees C similar to that of the wild type enzyme, indicating that this region is likely on the surface of the folded enzyme, as is the targeting domain of Cathepsin D. However, in the case of beta-hexosaminidase B, mutation of the Lys residues did not affect lysosomal compartmentalization. These data suggest that the hunt for the common protein signal that results in proper intracellular transport of lysosomal enzymes will not be straightforward and that Lys residues may not be an absolute requirement of the signal.  相似文献   

12.
Tropak MB  Mahuran D 《The FEBS journal》2007,274(19):4951-4961
Enzyme enhancement therapy is an emerging therapeutic approach that has the potential to treat many genetic diseases. Candidate diseases are those associated with a mutant protein that has difficulty folding and/or assembling into active oligomers in the endoplasmic reticulum. Many lysosomal storage diseases are candidates for enzyme enhancement therapy and have the additional advantage of requiring only 5-10% of normal enzyme levels to reduce and/or prevent substrate accumulation. Our long experience in working with the beta-hexosaminidase (EC 3.2.1.52) isozymes system and its associated deficiencies (Tay-Sachs and Sandhoff disease) lead us to search for possible enzyme enhancement therapy-agents that could treat the chronic forms of these diseases which express 2-5% residual activity. Pharmacological chaperones are enzyme enhancement therapy-agents that are competitive inhibitors of the target enzyme. Each of the known beta-hexosaminidase inhibitors (low microm IC50) increased mutant enzyme levels to >or= 10% in chronic Tay-Sachs fibroblasts and also attenuated the thermo-denaturation of beta-hexosaminidase. To expand the repertoire of pharmacological chaperones to more 'drug-like' compounds, we screened the Maybridge library of 50,000 compounds using a real-time assay for noncarbohydrate-based beta-hexosaminidase inhibitors and identified several that functioned as pharmacological chaperones in patient cells. Two of these inhibitors had derivatives that had been tested in humans for other purposes. These observations lead us to screen the NINDS library of 1040 Food and Drug Administration approved compounds for pharmacological chaperones. Pyrimethamine, an antimalarial drug with well documented pharmacokinetics, was confirmed as a beta-hexosaminidase pharmacological chaperone and compared favorably with our best carbohydrate-based pharmacological chaperone in patient cells with various mutant genotypes.  相似文献   

13.
A cell culture model stimulating the genetic deficiency of glucocerebrosidase has been developed, utilizing macrophages and conduritol B epoxide (CBE), the specific irreversible inhibitor of the enzyme. Rat peritoneal macrophage glucocerebrosidase was completely inhibited when cells were treated with 10 microM CBE for 16 h or 100 microM CBE for 2 h. The t1/2 of inactivation was 30 min at 10 microM concentration. When cells were washed free of CBE, the enzyme activity reappeared linearly with time, reaching 50% of control activity 48 h after removal of the inhibitor. CBE-treated macrophages have normal phagocytic activity toward [3H]glycine-coupled latex beads and a normal number of mannose receptors. CBE was found to have no effect on other lysosomal enzymes. When [14C]glucocerebroside, encapsulated in multilamellar liposomes with alpha-D-mannopyranoside covalently coupled to the surface, was fed to glucocerebrosidase-depleted macrophages, the radiolabelled glycolipid accumulated and was undegraded. Subcellular fractionation on a Percoll density gradient demonstrated that the stored glucocerebroside in the CBE-treated macrophages was localized in lysosomes.  相似文献   

14.
Summary Glucocerebroside -glucosidase (glucocerebrosidase) activity was assayed from cultured fibroblasts of normal individuals, and patients with type 1 (non-neuropathic), type 2 (acute neuropathic), and type 3 (subacute neuropathic) form of Gaucher disease. Residual glucocerebrosidase activity of patients was 8.9 to 17.4% of normal controls, and there was no clear correlation between the level of residual enzyme activity and the different clinical subtypes of the disease. When membrane-bound glucocerebrosidase activity was assayed in the presence of crude brain lipid extracts or purified phosphatidylserine, enzyme from both the normal and type 1 Gaucher fibroblasts was stimulated dramatically (35–60% by crude extracts, 85–90% by phosphatidylserine). This stimulation was not observed with fibroblast glucocerebrosidase of an infantile type 2 and two juvenile type 3 Gaucher patients. The presence of inhibitors of glucocerebrosidase in these type 2 and type 3 Gaucher cells was not detected. Contrary to the mutant enzyme from these Gaucher fibroblasts, glucocerebrosidase from fibroblasts of two adult type 3 Gaucher patients with cerebral involvement was stimulated substantially (72–85%) by phosphatidylserine. When membrane-bound glucocerebrosidase from fibroblasts of the infantile type 2 and juvenile type 3 patients was solubilized with sodium cholate (1% w/v) and delipidated, the phospholipid stimulation of enzyme activity was restored. These findings suggest that considerable clinical and biochemical heterogeneity exists among patients with neuropathic Gaucher disease and that phosphatidylserine activation cannot be used as a reliable indicator in predicting future onset of neurodegeneration in Gaucher patients. The possibility of an aberrant binding of mutant glucocerebrosidase to the lysosomal membrane in juvenile type 3 form of Gaucher disease is discussed.  相似文献   

15.
Electrophoretic properties of eight lysosomal hydrolases and 36 nonlysosomal enzymes were investigated in cultured fibroblasts from children with the inherited storage disease mucolipidosis II (ML II); fibroblasts from a child with a related disorder, mucolipidosis III (ML III); and two obligate heterozygous cell lines from parents of a ML II child. Cell homogenates of ML II fibroblast lines showed altered mobilities for lysosomal beta-hexosaminidase, acid phosphatase2, and alpha-mannosidase and deficient activity for the esterase-A4 and lysosomal alpha-mannosidase-B electrophoretic phenotypes. Altered mobility was also detected for the nonlysosomal enzyme adenosine deaminase-d. Deficient activities of other lysosomal enzymes were observed as previously reported. In a single ML III fibroblast line, only beta-hexosaminidase showed an abnormal electrophoretic pattern suggesting a difference between these cells and ML II fibroblasts. Thirty-five nonlysosomal enzymes associated with other cellular organelles and metabolic pathways were electrophoretically normal in all mucolipidosis cell lines. Heterozygous ML II cells showed normal expression for all enzymes. Two major patterns of altered lysosomal enzymes and adenosine deaminase were demonstrated in ML II cell lines, suggesting that at least two genetic forms of this disorder may exist. Neuraminidase treatment of ML II homogenates converted altered forms of acid phosphatase2 and adenosine deaminase-d and in two ML II lines, recovered the previously undetected lysosomal alpha-mannosidase band. These results are consistent with the mucolipidosis defect(s) being associated with abnormal post-translatinal processing of multiple lysosomal enzymes and adenosine deaminase-d.  相似文献   

16.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

17.
In addition to the lysosomal glucocerebrosidase, a distinct β-glucosidase that is also active towards glucosylceramide could be demonstrated in various human tissues and cell types. Subcellular fractionation analysis revealed that the hitherto undescribed glucocerebrosidase is not located in lysosomes but in compartments with a considerably lower density. The non-lysosomal glucocerebrosidase differed in several respects from lysosomal glucocerebrosidase. The non-lysosomal isoenzyme proved to be tightly membrane-bound, whereas lysosomal glucocerebrosidase is weakly membrane-associated. The pH optimum of the non-lysosomal isoenzyme is less acidic than that of lysosomal glucocerebrosidase. Non-lysosomal glucocerebrosidase, in contrast to the lysosomal isoenzyme, was not inhibited by low concentrations of conduritol B-epoxide, was markedly inhibited by taurocholate, was not stimulated in activity by the lysosomal activator protein saposin C, and was not deficient in patients with Gaucher disease. Non-lysosomal glucocerebrosidase proved to be less sensitive to inhibition by castanospermine or deoxynojirimycin but more sensitive to inhibition by D-gluconolactone than the lysosomal glucocerebrosidase. The physiological function of this second, non-lysosomal, glucocerebrosidase is as yet unknown.  相似文献   

18.
Summary Deficient arylsulfatase-A activity is diagnostic of a neurodegenerative human lysosomal storage disease, metachromatic leukodystrophy. Paradoxically, similar enzyme deficiency also occurs in normal individuals, who are known as being pseudo arylsulfatase-A deficient. We showed previously that this phenotype is associated with a structural gene mutation that produces an exceptionally labile enzyme. We now report on the nature and consequence of this mutation. When the mutant arylsulfatase-A is deglycosylated by endoglycosidase H, only one smaller molecular species was generated, instead of the two from the normal enzyme. This is consistent with the loss of one of the two N-linked oligosaccharide side chains known to be present on the wild-type enzyme. Quantitative analysis of mannose and leucine incorporation showed that the mutant enzyme incorporated two- to tenfold less mannose than the normal enzyme on a molar basis. This deficient glycosylation was specific to arylsulfatase-A. Another lysosomal enzyme not affected in this mutation, beta-hexosaminidase, was glycosylated normally in the mutant cells. The remaining single oligosaccharide side chain released from the mutant arylsulfatase-A by pronase digestion was normally processed to complex and high-mannose forms. However, the high-mannose side chains contained 30% fewer phosphorylated residues than those of the normal enzyme. Nevertheless, this reduced level of phosphorylation did not prevent targeting of the mutant enzyme to the lysosomes, a process normally mediated through phosphorylated mannose residues. In conclusion, pseudo arylsulfatase-A deficiency is a unique human mutation associated with reduced glycosylation and phosphorylation of a lysosomal enzyme with the loss of one of the two carbohydrate side chains. The mutation results in greatly reduced enzyme stability, thus indicating a role for oligosaccharides in maintaining enzyme stability within the degradative environment of the lysosomes. However, the residual catalytic activity or subcellular targeting of the mutant enzyme was not affected. These properties probably account for the benign clinical presentation of pseudo arylsulfatase-A deficiency.Abbreviations PD Pseudo arylsulfatase-A Deficiency - ARA Arylsulfatase-A  相似文献   

19.
Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that HNE-modified proteins are degraded by the ubiquitin–proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that HNE-modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is degraded by an enzyme that is sensitive to a serine protease inhibitor, diisopropyl fluorophosphate (DFP), but not a proteasome inhibitor, MG-132, and that its degradation is not catalyzed in the acidic pH range where lysosomal enzymes are active. In the present study, we purified an HNE-modified GAPDH-degrading enzyme from a U937 cell extract to a final active fraction containing two proteins of 28 kDa (P28) and 27 kDa (P27) that became labeled with [3H]DFP. Using peptide mass fingerprinting and a specific antibody, P28 and P27 were both identified as cathepsin G. The degradation activity was inhibited by cathepsin G inhibitors. Furthermore, a cell extract from U937 cells transfected with a cathepsin G-specific siRNA hardly degraded HNE-modified GAPDH. These results suggest that cathepsin G plays a role in the degradation of HNE-modified GAPDH.  相似文献   

20.
Exocrine acinar cells possess two cytochemically distinct populations of secondary lysosomes. One population is Golgi associated and has demonstrable acid phosphatase (AcPase) activity, whereas the second is basally located and lacks AcPase activity but has trimetaphosphatase (TMPase) activity. The basal lysosomes are tubular in shape and rapidly label with horseradish peroxidase (HRP) after intravenous injection. In the present study using isolated rat parotid acinar cells, the two lysosomal populations were separated by cell fractionation on Percoll density gradients and were analyzed biochemically and by EM cytochemistry. On 35% Percoll gradients, two peaks of AcPase and beta-hexosaminidase, both lysosomal marker enzymes, and succinic dehydrogenase, an enzyme marker for mitochondria, could be resolved. The major peaks of beta-hexosaminidase and succinic dehydrogenase and the minor peak of AcPase corresponded with the dense lysosome fraction. The major peak of AcPase and the minor peaks for beta-hexosaminidase and succinic dehydrogenase coincided with the light membrane fraction. Galactosyl transferase (a marker enzyme for Golgi saccules) and 5'-nucleotidase (a plasma membrane marker) were also associated with this fraction. By electron microscopy, the light membrane fraction was seen to contain tubular elements, multivesicular bodies (MVB), Golgi saccules, GERL, immature secretory granules, and some mitochondria. Electron microscopic cytochemical examination showed that these tubular structures were lysosomes. The dense lysosome fraction contained lysosomes positive for both AcPase and TMPase. After continuous incubation of isolated acinar cells with HRP, reaction product was rapidly localized to the light membrane fraction (greater than 2 min), where it was found in vesicles and tubular lysosomes. By 10 min it was present in MVB and tubular lysosomes, but by 60 min no HRP reaction product had appeared in the dense lysosomes. These results demonstrate that the tubular lysosomes are separable from dense lysosomes, typical secondary lysosomes, and are involved in the initial stages of endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号