首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cryo-electron tomography of vitreous sections is currently the most promising technique for visualizing arbitrary regions of eukaryotic cells or tissue at molecular resolution. Despite significant progress in the sample preparation techniques over the past few years, the three dimensional reconstruction using electron tomography is not as simple as in plunge frozen samples for various reasons, but mainly due to the effects of irradiation on the sections and the resulting poor alignment. Here, we present a new algorithm, which can provide a useful three-dimensional marker model after investigation of hundreds to thousands of observations calculated using local cross-correlation throughout the tilt series. The observations are chosen according to their coherence to a particular model and assigned to virtual markers. Through this type of measurement a merit figure can be calculated, precisely estimating the quality of the reconstruction. The merit figures of this alignment method are comparable to those obtained with plunge frozen samples using fiducial gold markers. An additional advantage of the algorithm is the implicit detection of areas in the sections that behave as rigid bodies and can thus be properly reconstructed.  相似文献   

2.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

3.
We describe the development of quantitative electron spectroscopic tomography (QuEST), which provides 3-D distributions of elements on a nanometer scale. Specifically, it is shown that QuEST can be applied to map the distribution of phosphorus in unstained sections of embedded cells. A series of 2-D elemental maps is derived from images recorded in the energy filtering transmission electron microscope for a range of specimen tilt angles. A quantitative 3-D elemental distribution is then reconstructed from the elemental tilt series. To obtain accurate quantitative elemental distributions it is necessary to correct for plural inelastic scattering at the phosphorus L2,3 edge, which is achieved by acquiring unfiltered and zero-loss images at each tilt angle. The data are acquired automatically using a cross correlation technique to correct for specimen drift and focus change between successive tilt angles. An algorithm based on the simultaneous iterative reconstruction technique (SIRT) is implemented to obtain quantitative information about the number of phosphorus atoms associated with each voxel in the reconstructed volume. We assess the accuracy of QuEST by determining the phosphorus content of ribosomes in a eukaryotic cell, and then apply it to estimate the density of nucleic acid in chromatin of the cell’s nucleus. From our experimental data, we estimate that the sensitivity for detecting phosphorus is 20 atoms in a 2.7 nm-sized voxel.  相似文献   

4.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. The full-length amelogenin uniquely regulates the growth, shape, and arrangement of enamel crystals. Protein hydrolysis will ultimately facilitate a tissue with high mineral content. Protein processing is however highly specific suggesting a functional role of the cleaved amelogenins in enamel maturation. Here we hypothesize that the cooperative self-assembly of the recombinant full-length amelogenin 25 kDa and the 23 kDa proteolytic cleavage product is a function of pH, mixing ratio and incubation time and is associated with the isoelectric point of the protein. Self-assembly of amelogenin into nanospheres which increased in size with increasing pH was observed by atomic force microscopy. Elongated structures of about 100 nm length and 25 nm width formed over several days for amelogenin 25 and 23 kDa predominantly at pH-values of 6.5 and 7.5, respectively. When both proteins 25 and 23 kDa were mixed, self-assembled nanostrings of 200–300 nm length consisting of fused nanospheres were obtained at pH around 7.0 within 24 h. The protein nanostrings formed links over time and a continuous mesh was obtained after 7 days. Electrical conductivity data also showed gradual changes when both amelogenins were mixed in solutions supporting the idea that elongated structures form over extended periods of time. We propose that due to the difference in the isoelectric point, self-assembled nanospheres composed of 23 or 25 kDa amelogenin have opposite ionic charges at pH-values around 7.0 and thus experience ionic attraction that enables cooperative self-assembly.  相似文献   

5.
Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.  相似文献   

6.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists.This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2–5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method.Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

7.
Amt/Rh proteins, which mediate movement of ammonium across cell membranes, are spread throughout the three kingdoms of life. Most functional studies on various members of the family have been performed using cellular assays in heterologous expression systems, which are, however, not very well suited for detailed mechanistic studies. Although now generally considered to be ammonia conducting channels, based on a number of experimental studies and structural insights, the possibility remains that some plant Amts facilitate net ammonium ion transport. The Escherichia coli channel AmtB has become the model system of choice for analysis of the mechanism of ammonia conductance, increasingly also through molecular dynamics simulations. Further progress in a more detailed mechanistic understanding of these proteins requires a reliable in vitro assay using purified protein, allowing quantitative kinetic measurements under a variety of experimental conditions for different Amt/Rh proteins, including mutants. Here, we critically review the existing functional data in the context of the most interesting and unresolved mechanistic questions and we present our results, obtained using an in vitro assay set up with the purified E. coli channel AmtB.  相似文献   

8.
Biochemical and structural studies of co-translational folding, targeting and translocation depend on an efficient methodology to prepare ribosome nascent chain complexes (RNCs). Here we present our approach for the generation of homogenous and stable RNCs involving in vitro translation and affinity purification. Fusing the SecM arrest sequence, which tightly interacts with the ribosomal tunnel, to the nascent polypeptide chain significantly enhanced the stability of the RNCs. We have been able to increase the yield of the affinity purification step by engineering a tag with higher affinity. The RNCs generated with this approach have been successfully used to obtain 3D cryo-electron microscopic reconstructions of complexes with the signal recognition particle and the translocon. The established procedure is highly efficient and if scaled up could yield milligram amounts of RNCs sufficient for crystallization experiments.  相似文献   

9.
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.  相似文献   

10.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

11.
Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously.  相似文献   

12.
13.
We are presenting a program for interactive segmentation of tomographic maps, based on objective criteria so as to yield reproducible results. The strategy starts with the automatic segmentation of the entire volume with the watershed algorithm in 3D. The watershed regions are clustered successively by supervised classification, allowing the segmentation of known organelles, such as membranes, vesicles and microtubules. These organelles are processed with topological models and input parameters manually derived from the tomograms. After known organelles are extracted from the volume, all other watershed regions can be organized into homogeneous assemblies on the basis of their densities. To complete the process, all voxels in the volume are assigned either to the background or individual structures, which can then be extracted for visualization with any rendering technique. The user interface of the program is written in Java, and computational routines are written in C. For some operations, involving the visualization of the tomogram, we refer to existing software, either open or commercial. While the program runs, a history file is created, that allows all parameters and other data to be saved for the purposes of comparison or exchange. Initially, the program was developed for the segmentation of synapses, and organelles belonging to these structures have thus far been the principal targets modeled with JUST. Since each organelle is clustered independently from the rest of the volume, however, the program can accommodate new models of different organelles as well as tomograms of other types of preparations of tissue, such as citoskeletal components in vitreous ice.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号