首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiating xylem elements of Avena coleoptiles have been examined by light and electron microscopy. Fixation in 2 per cent phosphate-buffered osmium tetroxide and in 6 per cent glutaraldehyde, followed by 2 per cent osmium tetroxide, revealed details of the cell wall and cytoplasmic fine structure. The localized secondary wall thickening identified the xylem elements and indicated their state of differentiation. These differentiating xylem elements have dense cytoplasmic contents in which the dictyosomes and elements of rough endoplasmic reticulum are especially numerous. Vesicles are associated with the dictyosomes and are found throughout the cytoplasm. In many cases, these vesicles have electron-opaque contents. "Microtubules" are abundant in the peripheral cytoplasm and are always associated with the secondary wall thickenings. These microtubules are oriented in a direction parallel to the microfibrillar direction of the thickenings. Other tubules are frequently found between the cell wall and the plasma membrane. Our results support the view that the morphological association of the "microtubules" with developing cell wall thickenings may have a functional significance, especially with respect to the orientation of the microfibrils. Dictyosomes and endoplasmic reticulum may have a function in some way connected with the synthetic mechanism of cell wall deposition.  相似文献   

2.
扁圆封印木(相似种)茎干的解剖特征   总被引:2,自引:1,他引:1  
贵州省水城矿区晚二叠世煤核中扁圆封印木(相似种Sigillaria cf.brardiiBrongn.)茎干的主要解剖特征如下:管状中柱,具多边形薄壁细胞组成的髓。初生木质部成环带状,外缘呈规则的齿槽状,向心式发育。次生木质部显束状特征,横切面管胞为方圆至长方形,纵切面为梯状壁增厚,并具流苏纹。射线1—2列细胞宽,数个至十余个细胞高。叶迹起源于初生木质部外缘的槽中,中始式,但以向心发育为主。  相似文献   

3.
The stem specimens of Sigillaria cf. brardii were collected from the coal balls of Upper Permian in Shuicheng Coal Mines in Guizhou Province. The main anatomical characteristics of Sigillaria cf. brardii are described as follows: The stem is siphonostelic, with pith composed entirely of polygonal parenchyma cells, there are secondary walls in some pith cell cavities these secondary walls show the characters of cell division. Surrounding the pith is the continuous cylindrical primary xylem which consists entirely of tracheids. The outermost, and part are the protoxylem elements show spiral secondary thickenings. In cross section, the outer edge of exarch primary xylem appears regularly sinuous, with trace of mesarch leaf originating from the furrows. The centripetal metaxylem is characterized by scalariform wall thickenings on the tracheids, and delicated strands of secondary wall materials extending between abjacent bars, these structures are called fimbris, or williamson striations, and are characteristic in lepidodendrids. The secondary xylem consists of tracheids and vascular rays. The tracheids, too, have scalariform wall thickenings and fimbris. The rays are one-to twocell width and several to more than ten cells in height.  相似文献   

4.
Ryser U 《Planta》2003,216(5):854-864
Antibodies were used to localise polysaccharide and protein networks in the protoxylem of etiolated soybean (Glycine max L.) hypocotyls. The deposition of glycine-rich proteins (GRPs) starts in the cell corners between protoxylem elements and xylem parenchyma cells. Finally, the GRPs form a network between two mature protoxylem elements. The network also interconnects the ring- and spiral-shaped secondary wall thickenings, as well as the thickenings with the middle lamellae of living xylem parenchyma cells. In addition to the GRP network, a polysaccharide network composed mainly of pectins is involved in the attachment of the secondary wall thickenings to the middle lamellae of xylem parenchyma cells.  相似文献   

5.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   

6.
Das Relief der Blattoberfläche   总被引:1,自引:0,他引:1  
H. F. Linskens 《Planta》1966,71(1):1-14
Summary Studies on the fine structural changes accompanying xylem differentiation in wheat coleoptile have indicated that the microtubules are concerned with the inception of a regular wall thickening pattern, and later with wall deposition at the thickening site. The endoplasmic reticulum is situated characteristically in continuous profiles between the thickenings. Radioautographic studies at the electron microscope level using labelled glucoses have shown that the endoplasmic reticulum, golgi bodies and the cytoplasm near the microtubules were often labelled during deposition into nearby thickenings of radioactive materials derived from the tritiated glucoses. Incorporation into the wall occurred mainly at the top of the thickenings. The plastids of the xylem cells were also often labelled, but only during the earlier stages of differentiation; when massive wall deposition was evident, such an incorporation was never observed. The fine structural and radioautographic results are briefly discussed in terms of the possible functions of the organelles in the plant cell.  相似文献   

7.
Xylem in early tracheophytes   总被引:4,自引:0,他引:4  
  相似文献   

8.
B. Schneider  W. Herth 《Protoplasma》1986,131(2):142-152
Summary Germ roots of several higher plants—maize (Zea mays), mung bean (Vigna radiata) and cress (Lepidium sativum)—were freeze-fractured without cryoprotection in order to confirm and extend the informations on frequency and distribution of plasma membrane particle complexes with respect to cellulose formation. In all three objects the PF of developing xylem elements showed rosette accumulations in the regions of wall thickenings. The rosette-distribution pattern ranges from random in a young stage, to more grouped in a probable intermediate stage to strictly localized in later stages. The frequency of rosettes increases from stage to stage.In all three objects the EF of developing xylem elements is relatively poor in particles. Observations of terminal globules were rare and undistinct. This leads to the assumption that rosettes on the PF and terminal globules on the EF are not part of the same complex.A comparison of the number and distribution of microtubules underlying the xylem wall thickenings with rosette frequency and distribution leads to the conclusion that there seem to be no direct connections between these two structures. Microtubules may be involved in grouping of rosettes, thus indirectly orienting microfibril deposition. Calculations based on the observed rosette frequencies and the amount of wall material formed indicate that in xylem development 1,000 nm elementary fibril per rosette per minute may be formed and that the active phase of one rosette may be about 10 minutes.Abbreviations EF exoplasmic fracture face - PF protoplasmic fracture face  相似文献   

9.
Roni Aloni  Tal Plotkin 《Planta》1985,163(1):126-132
The regenerative differentiation of xylem, both around a wound in the stem and at the root junction was studied in seedlings of maize. The regeneration of vessels around a wound was very small, being limited to the very young internodes and sharply declining basipetally. There were more regenerative vessel elements and they differentiated faster above the wound than below it. The regenerative vessel elements around the wound were characterized by helical or annular pattern of secondary wall thickenings. Wounding also resulted in the development of additional vascular anastomoses in the leaf immediately above the wound, and in differentiation of discontinuous vessels in adjacent bundles. Regenerative vessel elements were very common where the adventitious roots connected with the stem internodes, and exhibited pitted or reticulated secondary wall thickenings.  相似文献   

10.
Summary Tritiated leucine, tyrosine, phenylalanine, methyllabelled methionine, and cinnamic acid were used to study xylem wall deposition and lignin formation with radioautography. Leucine did not specifically label xylem thickenings; tyrosine, phenylalanine and methionine were quite good precursors in this regard. Cinnamic acid was also readily taken up by the tissues and was very markedly concentrated in the xylem thickenings; the labelling of thickenings also occurred in empty tracheids. In developing xylem cells, labelling of the cytoplasm indicated that both the endoplasmic reticulum and Golgi bodies were associated with the wall incorporation. Vesicles probably derived from the Golgi bodies, were generally observed to aggregate in the cytoplasm near the bands of wall microtubules (even if secondary wall thickening had not commenced). Simple biochemical analyses showed that incorporation of cinnamic acid into amino acids and proteins was negligible, but some lignin oxidation products were heavily labelled. The results are related to the biochemistry of lignin synthesis, and confirm that cinnamic acid is a highly specific marker for some forms of wall synthesis.  相似文献   

11.
It has been shown that Golgi bodies, endoplasmic reticulum,and microtubules are concerned with the organization and synthesisof materials which are incorporated into the wall of the manycells making up the various tissues of a young plant. Preformedmaterial is added to the wall from vesicles which in some cellscan be inferred to be derived from the Golgi bodies. The materialis passed to the wall by a process of pinocytosis. In othercells although the same process is apparent the origin of thevesicles cannot at present be ascertained. The organization of the growth and development of the wall iscontrolled to some extent by the endoplasmic reticulum whichcan be seen to be situated in the cell at positions relativeto particular regions of cell-wall development. This is veryapparent in the formation of pit fields, sieve plates, and thesecondary thickenings of the xylem. The microtubules are organized in the cytoplasm relative towall growth and can be seen in cells in which growth is eitheroccurring uniformly along the wall or as organized annular orspiral thickenings. In the former case the microtubules arealso present all along the length of the wall whereas in thelatter cells they are found grouped in relation to the developingthickenings.  相似文献   

12.
13.
The micromorphology of pits in tracheary elements was examined in 35 species representing 29 genera of Rosaceae and related families to evaluate the assumption that angiosperm pits are largely invariant. In most Rosaceae, pit membranes between fibers and tracheids frequently appear to have amorphous thickenings with an irregular distribution. Although these structures are torus-like under the light microscope, observations by electron microscopy illustrate that they represent "pseudotori" or plasmodesmata-associated thickenings. These thickenings frequently extend from the periphery of the pit membrane and form a cap-like, hollow structure. Pseudotori are occasionally found in few Elaeagnaceae and Rhamnaceae and appear to be related to species with fiber-tracheids and/or tracheids. True tori are strongly associated with round to oval pit apertures and are consistently present in narrow tracheary elements of Cercocarpus (Rosaceae), Planera (Ulmaceae), and ring-porous species of Ulmus and Zelkova (Ulmaceae). Vestured pits with homogenous pit membranes are reported for Hemiptelea (Ulmaceae). The homoplastic nature of pit membrane characteristics may be related to functional adaptations in terms of safety and efficiency of water transport or may reflect different developmental processes of xylem elements. These observations illustrate that there is more variation in angiosperm pits than previously thought.  相似文献   

14.
The xylem in the body of the haustorium of E. bidwillii has the shape of an inverted conical flask with the expanded portion being known as the vascular core. The tracheary elements of the vascular core are notable for the occurrence of numerous granules within their lumina and the presence of mostly imperforate walls. Elsewhere in the haustorium graniferous tracheary elements are absent and the cells are usually ordinary vessel elements. Thin sections for transmission electron microscopy, post-stained in potassium permanganate, show that the secondary wall thickenings of the graniferous tracheary elements consist of eccentric layers in which the microfibrils of each successive layer run alternately longitudinally and transversely. The granules of the tracheary elements average 2 micrometer in diameter and consist of a homogeneous matrix which shows a fine fibrillar structure on high resolution. The granules are naked and mostly remain as separate structures within the lumen of the cell, but occasionally they fuse into small groups or irregular masses. In some cells the granules become transformed into fibrillar material that disperses throughout the lumen. This dispersed material may accumulate in vessels of the interrupted zone proximal to the vascular core. Occasionally, the granules also change into compacted amorphous masses that adhere to the walls of the cell. Ultrastructural cytochemistry confirms that the granules are protein and not starch as was originally believed for the Santalaceae. The function of the vascular core and its graniferous tracheary elements is discussed and we suggest that it might help regulate the pressure and flow of xylem sap entering the parasite from the host. Graniferous tracheary elements in the Santalaceae and in root parasites of the Serophulariaceae are compared and it is concluded that they represent examples of convergent evolution.  相似文献   

15.
A survey of the patterns of endothecial wall thickenings in 106 representative species from 20 genera in the Pothoideae and Monsteroideae was made using cleared anthers, sections and macerations. The wide variety of wall thickenings that is present is based on an annular-helical pattern. Variations in thickenings are related to differences in cell shape, cell orientation, intergradation between helical and annular patterns, pitch of helices, presence of branched thickenings, and various types of discontinuities in thickenings. Notable exceptions to the annular-helical pattern include Culcasia, which lacks a differentiated endothecial layer with thickenings, and Acorus, which has a peculiar stellate pattern that is unique in the family. No single pattern consistently characterizes either subfamily, although continuous helices are common in the Monsteroideae, and rare in the endothecium of Pothoideae (except Anadendrum). Monsteroideae frequently exhibit a series of slanted separate thickenings on anticlinal walls, which is absent from Pothoideae except in Heteropsis. The slanted pattern is considered a variation on a rectangular helix, involving discontinuities of thickenings on the periclinal walls. Some monsteroid genera show considerably more interspecific variation (Rhaphidophora) than others (Monstera). Endothecial thickenings constitute an anatomical character that is useful in the systematic study of Araceae; present results support other anatomical studies in identifying Culcasia and Acorus as highly divergent genera in the Pothoideae.  相似文献   

16.
Quantitative and qualitative features of wood anatomy are reported for ten collections of seven species of Bubbia. Variations on the basic plan for Winteraceae can be interpreted in terms of taxonomic and ecological distinctions. Tracheid length is correlated with plant size and habit: tracheids are shortest in shrubs. Tracheid wall thickness and ray cell wall thickness distinguish species. Ray cell procumbency and multiseriate ray width increase with age. Growth rings occur only in a species from stream margins. SEM studies reveal absence of a warty layer within tracheids. Helical thickenings are absent. Presence of these two features in Pseudowintera may be correlated with the cool temperate habitats of that genus. Overlap areas of tracheids in Bubbia show various degrees of scalariform pitting, ranging from none (B. semecarpoides) to abundant presence (B. balansae). Perforation-like pits in tracheids of the latter prove, with SEM studies, to have pit membranes containing porosities less than 1 μm in diameter. Scalariform pitting on overlap areas is absent in earlier secondary xylem and increases during later secondary xylem. Scalariform lateral wall pitting can occur in abnormally wide tracheids formed after pauses in cambial activity. These facts show that primitive dicotyledon woods like those of Bubbia can activate genetic information for scalariform end wall patterns and lateral wall pitting such as primitive vessels show without the intervention of paedomorphosis. Paedomorphosis in dicotyledon woods is held still to apply only to special herbaceous and herblike growth forms, not to primarily woody plants. Progenesis (in xylem, loss of secondary xylem) is not held to be necessary to account for the scalariform patterns seen in tracheary elements of primitive dicotyledons. Reasons are given for rejection of the hypothesis that Winteraceae and other woody dicotyledons (Amborella, Sarcandra, Tetracentron, Trochodendron) are secondarily vesselless.  相似文献   

17.
A lycopsid axis from the New Albany Shale (Sanderson Formation) of Kentucky is described. The stem, which branches dichotomously, is 45 mm in diameter and is characterized by a relatively narrow parenchymatized protostele, a 3.0 mm-thick cylinder of secondary xylem, a tripartite cortex, and a periderm that is more than 5.0 mm thick. The secondary xylem is composed of uniseriate and biseriate vascular rays and narrow tracheids with scalariform wall thickenings on both radial and tangential walls. The periderm is characterized by elongate, thick-walled cells, some of which broaden tangentially in the outer part of the tissue forming zones that appear wedge-shaped in cross section. Surface features of the axis, including leaf bases, are not preserved. The stem is tentatively regarded as a member of the Lepidodendrales in accordance with the numerous anatomical characters that it shares with more recent representatives of the order. Because the external morphology is not known, however, the possibility exists that the axis corresponds to a protolepidodendralean taxon currently known only from compression and/or impression remains or some other nonlepidodendralean plant that produced secondary xylem. The extremely narrow profile of the secondary xylem tracheids (relative to other arborescent lycopsids) is interpreted as evidence that the plants grew in a habitat that was substantially drier than the Upper Carboniferous coal swamps.  相似文献   

18.
19.
Scott , Flora Murray , Virginia Sjaholm, and Edwin Bowler (U. California, Los Angeles.) Light and electron microscope studies of the primary xylem of Ricinus communis. Amer. Jour. Bot. 47(3) : 162-173. Illus. 1960.–The development of annular and spiral vessels in Ricinus communis has been examined under light and electron miscroscopes. Under the light microscope it is seen that spiral elements make up the bulk of the primary xylem. Pits and plasmodesmata are ubiquitous and are demonstrable in vertical and end walls. Plasmodesmata are evident in spiral thickenings. During tissue growth, intercellular spaces are formed between surrounding cells and developing vessels. These circum-vessel spaces are first lined with and later occluded by suberinlike substances. Traces of a material similar in microchemical reaction are laid down in the middle lamella. A suberin-like lining, termed in this paper the lipid lining, stainable with dimethylaminoazobenzene, occurs in mature living vessel elements. Innumerable minute fat-like droplets, refringent, and stainable with Sudan III, Sudan Black and also with osmic acid, occur in the outer cytoplasm and appear to be attached to the vessel lining by fine protoplasmic strands. They presumably are the source of the wall deposits. After the death of the protoplast, the vessel walls appear completely suberized. When contiguous cells are removed by treatment with I2ki-H2SO4, their site and the site of the intercellular spaces remain marked by linear suberized ridges on the vessel wall. Annular and spiral thickenings arise as cellulose strands and begin to lignify only when the vessel reaches maximum diameter. In transverse section, the broken end of an extracted spiral thickening appears stratified. Under the electron microscope, pits and plasmodesmata are evident in procambial and in differentiating xylem elements in all walls. Annular and spiral thickening are distinguishable first as closely woven microfibrillar cellulose bands. As lignin is deposited in the microfibrillar mesh, the thickenings become dense to the electron beam. Irradiation with the full strength of the electron beam distinguishes between spiral thickenings in younger and older vessels. Older spirals remain apparently unchanged. Younger spirals instantly swell, volatilize in part, and assume a moniliform outline. The bead-like swellings consist of a matrix partly transparent to the electron beam and an internal framework of a material comparatively dense to the electron beam. Similar intense irradiation differentiates between younger and older vessel linings. Older linings appear unchanged, while the younger react violently, volatilize in part and stabilize as an irregular coagulum set in a basic mesh. The volatilized substances appear as granules on lining surface or on substrate. The changing microfibrillar pattern of the cell wall is observed from the procambial stage to the final deposition of the lipid vessel lining.  相似文献   

20.
Zusammenfassung Innerhalb des Wirtsxylems wurden Haustorialzellen des WurzelparasitenOrobanche lichtund elektronenoptisch untersucht. Diese Zellen durchlaufen eine ungewöhnliche Differenzierung bis sie wasserleitendes Xylemanschlu\element sind. Von Haustorialzellen mit stark verdickten FrontwÄnden entwickeln sie sich bei Eintritt in das Wirtsxylem zu einer typischen Transferzelle mit polar zum Holzelement des Wirts angelegtem Wandlabyrinth. Erst durch einen zweiten Differenzierungsschritt wird die Transferzelle zum Wasserleitelement, indem die typischen SekundÄrwandverdickungen des Xylems in der Zelle angelegt werden. Diese entstehen teilweise innerhalb des Wandlabyrinths und sind stets gegenüber denjenigen des Wirtselements angelegt. Zuletzt wird das Labyrinth — bis auf gelegentliche Reststrukturen — abgebaut, der Protoplast degeneriert, und es entsteht ein haustoriales Wasserleitelement, das über kommunizierende Tüpfel an das Wirtselement angeschlossen ist.
Structural features of parasitism ofOrobanche III. The differentiation of xylem connexion ofO. crenata
Summary Haustorial cells of the root parasiteOrobanche within the xylem of the host tissue were investigated by light- and electronmicroscopy. Coming into contact with the tracheary elements of the host these cells show an unusual differentiation before turning into a water conducting xylem element. From haustorial cells with thickened front walls they develop into typical transfer cells, bearing wall ingrowth in those parts of the wall orientated towards the tracheary elements of the host. During further differentiation the transfer cell changes into a water conducting element by developing the typical secondary wall thickenings of xylem elements within the cell. Partly these wall thickenings are formed inside the labyrinth structures of the transfer cell, always situated opposite those of the tracheary element of the host. Simultaneously the labyrinth disintegrates—some small remnants of wall ingrowths may persist. The protoplast degenerates, and finally a haustorial water conducting element results. Host- und parasitic tracheary elements are connected by pits.


Wir danken FrauChristl Glockmann für ihre stets verantwortungsvolle Mitarbeit. Den GÄrtnern des Botanischen Gartens in Kiel sei Dank für die oft schwierige Anzucht des Pflanzenmaterials. Die Untersuchungen wurden durch Mittel der Deutschen Forschungsgemeinschaft gefördert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号