首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.  相似文献   

2.
Lattorff HM  Moritz RF  Fuchs S 《Heredity》2005,94(5):533-537
The evolution and maintenance of parthenogenetic species are a puzzling issue in evolutionary biology. Although the genetic mechanisms that act to restore diploidy are well studied, the underlying genes that cause the switch from sexual reproduction to parthenogenesis have not been analysed. There are several species that are polymorphic for sexual and parthenogenetic reproduction, which may have a genetic basis. We use the South African honeybee subspecies Apis mellifera capensis to analyse the genetic control of thelytoky (asexual production of female workers). Due to the caste system of honeybees, it is possible to establish classical backcrosses using sexually reproducing queens and drones of both arrhenotokous and thelytokous subspecies, and to score the frequency of parthenogenesis in the resulting workers. We found Mendelian segregation for thelytoky of egg-laying workers, which appears to be controlled by a single major gene (th). The segregation pattern indicates a recessive allele causing thelytoky. We found no evidence for maternal transmission of bacterial endosymbionts controlling parthenogenesis. Thelytokous parthenogenesis of honeybee workers appears to be a classical qualitative trait, because we did not observe mixed parthenogenesis (amphitoky), which might be expected in the case of multi-locus inheritance.  相似文献   

3.
In the Cape honeybee, Apis mellifera capensis, workers lay diploid(female) eggs via thelytoky. In other A. mellifera subspecies,workers lay haploid (male) eggs via arrhenotoky. When thelytokousworker reproduction occurs, worker policing has no relatednessbenefit because workers are equally related to their sisterworkers' clonal offspring and their mother queen's female offspring.We studied worker policing in A. m. capensis and in the arrhenotokousAfrican honeybee A. m. scutellata by quantifying the removalrates of worker-laid and queen-laid eggs. Discriminator coloniesof both subspecies policed worker-laid eggs of both their ownand the other subspecies. The occurrence of worker policing,despite the lack of relatedness benefit, in A. m. capensis stronglysuggests that worker reproduction is costly to the colony andthat policing is maintained because it enhances colony efficiency.In addition, because both subspecies policed each others eggs,it is probable that the mechanism used in thelytokous A. m.capensis to discriminate between queen-laid and worker-laideggs is the same as in arrhenotokous A. m. scutellata.  相似文献   

4.
Reproduction by workers is rare in honey bee colonies that have an active queen. By not producing their own offspring and preventing other workers from producing theirs, workers are thought to increase their inclusive fitness due to their higher average relatedness towards queen-produced male offspring compared with worker-produced male offspring. But there is one exception. Workers of the Cape honey bee, Apis mellifera capensis, are able to produce diploid female offspring via thelytokous parthenogenesis and thus produce clones of themselves. As a result, worker reproduction and tolerance towards worker-produced offspring is expected to be more permissive than in arrhenotokous (sub)species where worker offspring are male. Here we quantify the extent to which A. m. capensis workers contribute to reproduction in queenright colonies using microsatellite analyses of pre-emergent brood. We show that workers produced 10.5% of workers and 0.48% of drones. Most of the workers' contribution towards the production of new workers coincided with the colonies producing new queens during reproductive swarming.  相似文献   

5.
When workers of the thelytokous Cape honeybee, Apis mellifera capensis, come into contact with colonies of the neighboring arrhenotokous subspecies Apis mellifera scutellata, they can become lethal social parasites. We examined the inheritance of 3 traits (number of ovarioles, number of basitarsal hairs, and size of spermatheca) that are thought to be associated with reproductive potential in A. m. capensis workers. To do so, we produced hybrid A. m. scutellata/A. m. capensis queens and backcrossed them to either A. m. capensis or A. m. scutellata drones. We then measured the 3 traits in parental, hybrid, and backcross offspring. We show that the 3 traits are phenotypically correlated. We also show that the expression of ovariole number, basitarsal hairs, and size of spermatheca is influenced by the genotype of the individual and the rearing environment but that the influence of the rearing environment is less important to the number of ovarioles. We hypothesize a single recessive allele (l), present at high frequency in natural A. m. capensis populations, which when homozygous causes larvae to elicit more food. This increased feeding as larvae causes resulting adult workers to develop more queen-like morphology and increased reproductive potential. The number of ovarioles, in contrast, appears to be under independent genetic control.  相似文献   

6.
Thelytokous parthenogenesis, the production of diploid female offspring from unfertilized eggs, can be caused by several cytological mechanisms, which have a different impact on the genetic variation on the offspring. The ponerine ant Platythyrea punctata is widely distributed throughout the Caribbean Islands and Central America and exhibits facultative parthenogenesis. Workers in many field colonies from the Caribbean Islands have identical multilocus genotypes and are thus probably clonal, but the occurrence of males makes an ameiotic mechanism of thelytoky unlikely. To clarify the details of thelytoky in this species we compared the multilocus genotypes of mothers and their offspring in experimental colonies and analyzed the genotypes of haploid and diploid males. Additionally, we screened a large number of field colonies from thelytokous populations for the occurrence of recombination events. According to these data, automixis with central fusion and a reduced recombination rate is the most likely mechanism of thelytoky, as in the Cape honeybee and the ant Cataglyphis cursor.  相似文献   

7.
High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.  相似文献   

8.
Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers. This possibility sets the scene for intragenomic conflict between queens and drones over worker reproductive traits. Here, we show a strong parent-of-origin effect for ovary size (number of ovarioles) in reciprocal crosses between two honeybee subspecies, A. m. capensis and Apis mellifera scutellata. In this cross, workers with an A. m. capensis father had 30% more ovarioles than genotypically matched workers with an A. m. scutellata father. Other traits we measured (worker weight at emergence and the presence/absence of a spermatheca) are influenced more by rearing conditions than by parent-of-origin effects. Our study is the first to show a strong epigenetic (or, less likely, cytoplasmic maternal) effect for a reproductive trait in the honeybee and suggests that a search for parent-of-origin effects in other social insects may be fruitful.  相似文献   

9.
Workers of the honey bee subspecies Apis mellifera capensis (Eschscholtz) produce female offspring by thelytokous parthenogenesis and can parasitize colonies of other subspecies. In 1990, translocation of 400 colonies of A. m. capensis into the distribution area of A. m. scutellata by a commercial beekeeper triggered a dramatic parasitic phenomenon. Parasitized colonies died within a few months of infestation, and this resulted in the loss of tens of thousands of colonies by commercial beekeepers in the A. m. scutellata range in South Africa. To deal with the problem and to identify methods that would limit the impact of the social parasite, we investigated the link between beekeeping management and severity of parasitic infestations in terms of colony mortality and productivity. We demonstrate that colonies from apiaries subjected to migrations are very susceptible to infestation and consequently show dramatic mortality. Their productivity is also inferior to sedentary colonies and those in isolated apiaries in terms of honey yield and brood quantity. Furthermore, by concentrating hives in small areas and often in the vicinity of other beekeepers, cross-infestations can easily occur. This can undermine previously parasite-free beekeeping businesses. As a result of our surveys, we propose beekeeping practices based on locally trapped bees, reduced migration, and better control of parasite spread, thus promoting the conservation of these pollinators. If followed by all the South African beekeepers, these measures should limit the spread of the parasite until it is eliminated within a few years, after which full migratory beekeeping practices could resume.  相似文献   

10.
Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species.  相似文献   

11.
The recent invasion by self-replicating socially parasitic Cape honeybee workers, Apis mellifera capensis, of colonies of the neighbouring African subspecies Apis mellifera scutellata represents an opportunity to study evolution of intraspecific parasitism in real time. As honeybee workers compete pheromonally for reproductive dominance, and as A. m. capensis workers readily produce queen-like pheromones, we hypothesized that these semiochemicals promoted the evolution of intraspecific social parasitism. Remarkably, the offspring of a single worker became established as a parasite in A. m. scutellata's range. This could have resulted from extreme selection among different clonal parasitic worker lineages. Using pheromonal contest experiments, we show that the selected parasitic lineage dominates in the production of mandibular gland pheromones over all other competitors to which it is exposed. Our results suggest that mandibular gland pheromones played a key role in the evolution of intraspecific social parasitism in the honeybee and in the selection of a single genotype of parasitic workers.  相似文献   

12.
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.  相似文献   

13.
Summary. In a few, scattered species of social Hymenoptera, unmated workers are capable of producing female offspring from unfertilized eggs through thelytokous parthenogenesis. Regular thelytoky has previously been demonstrated in a number of populations of the neotropical ant Platythyrea punctata. Nevertheless, the finding of males and inseminated queens and workers suggested the sporadic occurrence of sex. In this study we investigated the genetic structure of colonies from Puerto Rico and Costa Rica in order to detect traces of occasional sexual reproduction. Most Puerto Rican colonies had a clonal structure with all nestmates sharing the same multilocus genotype, indicating that thelytoky is the predominant mode of reproduction. Genetic variability was detected in six of 18 colonies and might have arisen from adoption of alien workers in one colony and from the adoption of alien workers, recombination during parthenogenesis, or sexual reproduction in the other colonies. The reproductive of one of these latter colonies was found to be an inseminated worker (gamergate), and the genotypes of its nestmates definitively suggested recombination and sexual reproduction. Three gamergates were found in a single colony collected in Costa Rica, and all produced offspring from fertilized eggs, while uninseminated workers were apparently incapable of reproducing by thelytoky.Received 10 August 2004; revised 20 October 2004; accepted 3 November 2004.  相似文献   

14.
Pirk CW  Lattorff HM  Moritz RF  Sole CL  Radloff SE  Neumann P  Hepburn HR  Crewe RM 《The Journal of heredity》2012,103(4):612-4; author reply 614-5
Laying workers of the Cape honeybee parthenogenetically produce female offspring, whereas queens typically produce males. Beekman et al. confirm this observation, which has repeatedly been reported over the last 100 years including the notion that natural selection should favor asexual reproduction in Apis mellifera capensis. They attempt to support their arguments with an exceptionally surprising finding that A. m. capensis queens can parthenogenetically produce diploid homozygous queen offspring (homozygous diploid individuals develop into diploid males in the honeybee). Beekman et al. suggest that these homozygous queens are not viable because they did not find any homozygous individuals beyond the third larval instar. Even if this were true, such a lethal trait should be quickly eliminated by natural selection. The identification of sex (both with molecular and morphological markers) is possible but notoriously difficult in honeybees at the early larval stages. Ploidy is however a reliable indicator, and we therefore suggest that these "homozygous" larvae found in queen cells are actually drones reared from unfertilized eggs, a phenomenon well known by honeybee queen breeders.  相似文献   

15.
Pearcy M  Hardy O  Aron S 《Heredity》2006,96(5):377-382
Thelytokous parthenogenesis, that is, the production of diploid daughters from unfertilized eggs, may involve various cytological mechanisms, each having a different impact on the genetic structure of populations. Here, we determined the cytological mechanism of thelytokous parthenogenesis and its impact on inbreeding in the ant Cataglyphis cursor, a species where queens use both sexual and asexual reproduction to produce, respectively, workers and new queens. It has been suggested that thelytokous parthenogenesis in C. cursor might have been selected for to face high queen mortality and, originally, to allow workers to replace the queen when she passes away. We first determined the mode of thelytokous parthenogenesis by comparing the rate of transition to homozygosity at four highly polymorphic loci to expectations under the different modes of parthenogenesis. Our data show that thelytoky is achieved through automictic parthenogenesis with central fusion. We then estimated the proportion of colonies headed by worker-produced queens in a natural population. We designed a model linking the observed homozygosity in queens to the proportion of queens produced by workers, based on the assumption that (i) parthenogenesis is automictic with central fusion and (ii) queen lineage is asexually produced, resulting in an increase of the inbreeding over generations, whereas workers are sexually produced and therefore not inbred. Our results indicate that more than 60% of the colonies should be headed by a worker-produced queen, suggesting that queen's lifespan is low in this species.  相似文献   

16.
Cheating honeybee workers produce royal offspring   总被引:6,自引:0,他引:6  
The Cape bee (Apis mellifera capensis) is unique among honeybees in that workers can lay eggs that instead of developing into males develop into females via thelytokous parthenogenesis. We show that this ability allows workers to compete directly with the queen over the production of new queens. Genetic analyses using microsatellites revealed that 23 out of 39 new queens produced by seven colonies were offspring of workers and not the resident queen. Of these, eight were laid by resident workers, but the majority were offspring of parasitic workers from other colonies. The parasites were derived from several clonal lineages that entered the colonies and successfully targeted queen cells for parasitism. Hence, these parasitic workers had the potential to become genetically reincarnated as queens. Of the daughter queens laid by the resident queen, three were produced asexually, suggesting that queens can 'choose' to produce daughter queens clonally and thus have the potential for genetic immortality.  相似文献   

17.
Sex-specific recombination rates in zebrafish (Danio rerio)   总被引:7,自引:0,他引:7  
In many organisms, the rate of genetic recombination is not uniform along the length of chromosomes or between sexes. To compare the relative recombination rates during meiosis in male and female zebrafish, we constructed a genetic map based on male meiosis. We developed a meiotic mapping panel of 94 androgenetic haploid embryos that were scored for genetic polymorphisms. The resulting male map was compared to female and sex-average maps. We found that the recombination rate in male meiosis is dramatically suppressed relative to that of female meiosis, especially near the centromere. These findings have practical applications for experimental design. The use of exclusively female meiosis in a positional cloning project maximizes the ratio of genetic map distance to physical distance. Alternatively, the use of exclusively male meiosis to localize a mutation initially to a linkage group or to maintain relationships of linked alleles minimizes recombination, thereby facilitating some types of analysis.  相似文献   

18.
蜜蜂繁殖冲突与雌性蜜蜂信息素研究进展   总被引:1,自引:0,他引:1  
吴小波  张飞  曾志将 《昆虫知识》2012,49(5):1372-1377
在营造社会性生活的蜜蜂群体里,蜂王释放出蜂王信息素来控制工蜂卵巢发育及改造王台特性,并吸引雄蜂为之交配,使蜂群正常繁衍。本文在国内外相关研究的基础上,对蜜蜂各蜂种、亚种以及特殊蜂群无政府主义蜂群、海角蜜蜂等雌性蜜蜂信息素成分以及含量变化进行综合论述,并对蜂王主要信息素对工蜂和雄蜂生理影响以及今后的研究趋势作扼要介绍。  相似文献   

19.
SYNOPSIS. Two types of parthenogenesis, arrhenotoky and thelytoky,exist in the Hymenoptera. Arrhenotoky, the development of malesfrom unfertilized eggs, is present in all wasps and bees. Thelytoky,the development of diploid females from unfertilized eggs, ispresent in a few species. Two types of thelytoky, apomixis andautomixis, are known. Most thelytokous Hymenoptera are automictic.No meiosis, only mitosis, occurs in apomixis. Meiosis does occurin automixis, allowing crossing-over and segregation of genes.Advantages of thelytoky are that heterotic combinations becomefixed, gene loss is reduced, and reproduction requires onlya single individual. One advantage of arrhenotoky is that geneticload in males is eliminated. Both environmental and geneticfactors contribute to sex-determination in the haplodiploidsystem of Hymenoptera. Haplodiploidy can facilitate the evolutionof social behavior. Parthenogenesis creates some taxonomic problemssince thelytokous clones do not fit the generally accepted biologicalspecies concept. Some members of bisexual populations probablyacquirethelytoky, forming their own clones, races, or species.  相似文献   

20.
Geographic parthenogenesis is a distribution pattern, in which parthenogenetic populations tend to live in marginal habitats, at higher latitudes and altitudes and island‐like habitats compared with the sexual forms. The facultatively parthenogenetic ant Platythyrea punctata is thought to exhibit this general pattern throughout its wide range in Central America and the Caribbean Islands. Workers of P. punctata from the Caribbean produce diploid female offspring from unfertilized eggs by thelytokous parthenogenesis, and mated females and males are rare. In contrast, workers in one colony from Costa Rica were incapable of thelytoky; instead mated workers produced all female offspring. Because sample sizes were very low in former studies, we here use microsatellite markers and explicit tests of thelytoky to examine the population genetic structure of ancestral and derived populations of P. punctata throughout the Caribbean and Central America. Populations from the Caribbean islands were fully capable of parthenogenesis, and population genetic signatures indicate that this is the predominant mode of reproduction, although males are occasionally produced. In contrast, the northernmost population on the mainland (Texas) showed signatures of sexual reproduction, and individuals were incapable of reproduction by thelytoky. Contrary to expectations from a geographic parthenogenesis distribution pattern, most parts of the mainland populations were found to be facultatively thelytokous, with population genetic signatures of both sexual and parthenogenetic reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号