首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A transformation system was established for red raspberry, blackberry and blackberry x raspberry hybrids, utilizing the binary vector system of Agrobacterium tumefaciens. Leaf discs or internodal stem segments were inoculated with Agrobacterium strain LBA4404 containing the binary vectors PBI121.X, which has the -glucuronidase (GUS) marker gene, or Bin 19, which has the neomycin phosphotransferase II (NPT II) gene. Regenerants were produced on media containing MS salts, 20 gl-1 sucrose, 7 gl-1 agar, 100 mgl-1 inositol, 0.5 mgl-1 nicotinic acid, 0.5 mgl-1 pyridoxine-HCl, 0.1 mgl-1 thiamine, and either 0.1 mgl-1 IBA and 2 mgl-1 BAP for leaf discs, or 0.2 mgl-1 BAP and 0.2 mgl-1 2,4-D for stem segments. Kanamycin sulphate, which was used as a selective agent for the NPT II gene, inhibited organogenesis at 50 mgl-1 and was therefore unsuitable for use as a selectable marker gene in Rubus. All regenerants were assayed utilizing the fluorogenic assay procedure to determine if the GUS gene had been transferred into the material and could therefore cleave the substrate 4-methyl-umbelliferyl--D-glucuronide. Seven GUS-positive plantlets were obtained which confirmed that this marker gene had been transferred into Rubus. A dot blot assay was carried out on GUS-positive plant material to establish if the NPT II gene had also been transferred to the plant material.  相似文献   

2.
Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI) transgene under control of the maize ubiquitin constitutive promoter were obtained using the transformation system described here. Proliferating immature zygotic embryos were used as target tissue for bombardment using a particle inflow gun. Different culture and selection strategies were assessed in order to obtain an optimised mannose selection protocol. Stable integration of the manA gene into the genome of pearl millet was confirmed by PCR and Southern blot analysis. Stable integration of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2 progeny of two independent transformation events with no more than four to ten copies of the transgene. Similar to results obtained from previous studies with maize and wheat, the manA gene was shown to be a superior selectable marker gene for improving transformation efficiencies when compared to antibiotic or herbicide selectable marker genes.Abbreviations 2,4-D: 2,4-Diclorophenoxyacetic acid - IAA: Indole acetic acid - ICRISAT: International Crops Research Institute for the Semi-Arid Tropics - IZEs Immature zygotic embryos Communicated by H. Lörz  相似文献   

3.
Summary Using an Agrobacterium tumefaciens binary vector (pAL4404, pBI131), we have demonstrated the transfer of the -glucuronidase gene into the flax (Linum usitatissimum L.) cultivar Glenelg after selection for kanamycin resistance. The transformed lines were obtained by inoculation and subsequent regeneration of hypocotyl segments. The callus that formed on the cut surfaces of the hypocotyl segments was isolated three weeks after infection and was subsequently subcultured to yield shoots. This procedure generated a large number of transgenic shoots over a relatively short period of time. The transformation efficiencies obtained were the highest reported so far for this plant species.Abbreviations 2,4-D, 2,4 dichlorophenoxyacetic acid - GUS glucuronidase - MS Murasbige and Skoog (1962) medium - MU 4-methyl-umbelliferone - MUG 4-methylumbelliferyl-glucuronide - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction  相似文献   

4.
A relatively large proportion of the flax genome (~ 3%) is comprised of 5S rRNA genes. This study focuses on the intraspecific sequence variation among five distinct groups of 5S rRNA genes. The results indicate that group 1 and 2 5S rRNA genes most closely resemble other angiosperm 5S genes, while groups 3–5 are highly divergent. Sequence variation is higher in the spacer region compared to the transcribed region for all pairwise comparisons. The large degree of sequence variation observed in this study is discussed with respect to genome organization and proposed models for repetitive sequence maintenance.  相似文献   

5.
A mannose selection system was adapted for use in the Agrobacterium-mediated transformation of Chinese cabbage. This system makes use of the pmi gene that encodes phosphomannose isomerase, which converts mannose-6-phosphate to fructose-6-phosphate. Hypocotyl explants from 4–5-day-old seedlings of Chinese cabbage inbred lines were pre-cultured for 2–3 days and then infected with Agrobacterium. Two genes (l-guluno-γ-lactone oxidase, GLOase, and jasmonic methyl transferase, JMT) were transformed into Chinese cabbage using the transformation procedure developed in this study. We found that supplementing the media with 7 g l−1 mannose and 2% sucrose provides the necessary conditions for the selection of transformed plants from nontransformed plants. The transformation rates were 1.4% for GLOase and 3.0% for JMT, respectively. The Southern blot analysis revealed that several independent transformants (T 0) were obtained from each transgene. Three different inbred lines were transformed, and most of the T 1 plants had normal phenotypes. The transformation method presented here for Chinese cabbage using mannose selection is efficient and reproducible, and it can be useful to introduce a desirable gene(s) into commercially useful inbred lines of Chinese cabbage.  相似文献   

6.
A new selection system for onion transformation that does not require the use of antibiotics or herbicides was developed. The selection system used the Escherichia coli gene that encodes phosphomannose isomerase (pmi). Transgenic plants carrying the manA gene that codes for pmi can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the pmi activity. Six-week-old embryogenic callus initiated from seedling radicle was used for transformation. Transgenic plants were produced efficiently with transformation rates of 27 and 23% using Agrobacterium and biolistic system, respectively. Untransformed shoots were eliminated by a stepwise increase from 10 g l−1 sucrose with 10 g l−1 mannose in the first selection to only10 g l−1 mannose in the second selection. Integrative transformation was confirmed by PCR, RT-PCR and Southern hybridization. An erratum to this article can be found at  相似文献   

7.
Summary Selectable marker genes play an important role in plant transformation. The level of selection pressure is generally established by generating a kill curve for the selectable marker. In most cases, the lowest concentration which kills all explants is used. This study examined two selectable marker genes, phosphinothricin acetyl transferase (PAT) and hygromycin phosphotransferase (HPT), in transformation of tobacco leaf disks. Experiments to determine the lethal level of the herbicide, glufosinate-ammonium (phosphinothricin) (PPT) using a leaf-disk regeneration assay established that no shoots regenerated at 2 to 4 mg PPT per 1. Likewise with the antibiotic, hygromycin (HYG), no plants regenerated at 50 mg hygromycin per 1. In contrast, after cocultivation of the leaf disks withAgrobacterium tumefaciens containing either the PAT or HPT gene in combination with a Bt gene for insect resistance, plants were successfully regenerated from leaf disks at 2 to 4 mg PPT per 1 and 50 mg hygromycin per 1. However, most plants regenerated at 2 and 3 mg PPT per 1 were found to be nontransformed (95–100% escapes) by i) Southern-blot analysis, ii) herbicide application test, and iii) insect feeding bioassay. On the other hand, plants that regenerated on 50 mg hygromycin per 1 and 4 mg PPT per 1 were transgenic as determined by Southern analysis, leaf assay for PPT or HYG resistance, and death of tobacco budworms feeding on these leaves. This study showed a significant level of cross-protection and/or transient expression of the PAT selectable marker gene allowing escapes (95–100%) at selection levels of 2 and 3 mg PPT per 1 which completely kill controls. On the other hand, the HPT gene at 50 mg is efficient in selecting for T-DNA integration.  相似文献   

8.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

9.
Luo K  Zheng X  Chen Y  Xiao Y  Zhao D  McAvoy R  Pei Y  Li Y 《Plant cell reports》2006,25(5):403-409
We have assessed the use of a homeobox gene knotted1 (kn1) from maize as a selectable marker gene for plant transformation. The kn1 gene under the control of cauliflower mosaic virus 35S promoter (35S::kn1) was introduced into Nicotiana tabacum cv. Xanthi via Agrobacterium-mediated transformation. Under nonselective conditions (without antibiotic selection) on a hormone-free medium (MS), a large number of transgenic calli and shoots were obtained from explants that were infected with Agrobacterium tumefaciens LBA4404 harboring the 35S::kn1 gene. On the other hand, no calli or shoots were produced from explants that were infected with an Agrobacterium strain harboring pBI121 (nptII selection) or from uninfected controls cultured under identical conditions. Relative to kanamycin selection conferred by nptII, the use of kn1 resulted in a 3-fold increase in transformation efficiency. The transgenic status of shoots obtained was confirmed by both histochemical detection of GUS activity and molecular analysis. The results presented here suggest that kn1 gene could be used as an effective alternative selection marker with a potential to enhance plant transformation efficiency in many plant species. With kn1 gene as a selection marker gene, no antibiotic-resistance or herbicide-resistance genes are needed so that potential risks associated with the use of these traditional selection marker genes can be eliminated.  相似文献   

10.
A bundle of flax (Linum usitatissimum L.) radiocarbon dated to 1210±70 uncal B.P. (830±90 cal A.D.) was analysed for its macrofossil content. Apart from stems, capsules and seeds of flax., a large number of diaspores (fruits and seeds) from other plants was identified. Field weeds were the most numerous taxa present, among them three flax field weeds,Spergula maxima, Camelina alyssum andCuscuta cpilinum. Development of the specific flax weed community is discussed. Indicator values are used to characterize the edaphic conditions of this early medieval flax field. The field weeds spectrum also suggests that this flax was sown as a summer crop after an earlier crop of millet.  相似文献   

11.
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation.In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.  相似文献   

12.
Regeneration of flax plants transformed by Agrobacterium rhizogenes   总被引:2,自引:0,他引:2  
Regeneration of flax (Linum usitatissimum) following transformation by either Agrobacterium tumefaciens carrying a disarmed Ti-plasmid vector, or Agrobacterium rhizogenes carrying an unmodified Ri plasmid, was examined. Hypocotyl and cotyledon explants inoculated with A. tumefaciens formed transformed callus, but did not regenerate transformed shoots either directly or via callus. However, cotyledon explants inoculated with A. rhizogenes formed transformed roots which did regenerate transformed shoots. Ri T-DNA encoded opines were detected in the transformed plantlets and Southern hybridization analysis confirmed the presence of T-DNA from the Ri plasmid in their DNA. Transformed plantlets had curled leaves, short internodes and some had a more developed root system characterized by plagiotropic behaviour.  相似文献   

13.
A new selection system using mannose has been evaluated for germ-line transformation ofArabidopsis thaliana. Although mannose itself has no adverse effects on plant cells, it leads to an accumulation of mannose-6-phosphate, which depletes intracellular stores of inorganic phosphate. This results in an inhibition of plant cell growth. The selection system uses theEscherichia coli pmi gene that encodes phosphomannose isomerase (PMI). Transgenic plants carrying thepmi gene can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the PMI activity. Germ-line transformation ofA. thaliana followed by sterile selection on 2–5 mM of mannose resulted in the isolation of mannose-6-phosphate-resistant progeny in about 2.5% of the treated seed, consistent with transformation rates using other selection schemes. Integrative transformation was confirmed by Southern hybridization. Analysis of PMI enzyme activity demonstrated a 5-fold range of activity levels, although these differences had little effect on the ability to select transformed plants or on the growth of transformed plants on mannose. Finally, mannose selection using thepmi gene could be accomplished in sterile plates and in soil, making this an extremely versatile tool forA. thaliana transformation.  相似文献   

14.
Arabitol dehydrogenase as a selectable marker for rice   总被引:3,自引:0,他引:3  
Arabitol dehydrogenase has been adapted for use as a plant selectable marker. Arabitol is a five-carbon sugar alcohol that can be used by E. coli strain C, but not by the laboratory K12 strains. The enzyme converts the non-plant-metabolizable sugar arabitol into xylulose, which is metabolized by plant cells. Rice was transformed with a plant-expression-optimized synthetic gene using Biolistic-mediated transformation. Selection on 2.75% arabitol and 0.25% sucrose yielded a transformation efficiency (9.3%) equal to that obtained with hygromycin (9.2%). Molecular analyses showed that the atlD gene was integrated into the rice genome of selected plants and was inherited in a Mendelian manner. This study indicates that arabitol could serve as an effective means of plant selection.  相似文献   

15.
Doubled haploid (DH) genotypes from a genetic mapping population of Brassica oleracea were screened for ease of transformation. Candidate genotypes were selected based on prior knowledge of three phenotypic markers: susceptibility to Agrobacterium tumefaciens, shoot regeneration potential and mode of shoot regeneration. Mode of regeneration was found to be the most significant of the three factors. Transgenic plants were successfully obtained from genotypes that regenerated multiple shoots via a distinct swelling or callus phase. The absence of tissue culture blackening (associated with genotypes that formed callus) was found to be critical for transformation success. Transgenic shoots were obtained from genotypes that regenerated via an indirect callus mode, even when susceptibility to Agrobacterium was low. The most efficient genotype (DH AG1012) produced transgenic shoots at an average rate of 15% (percentage of inoculated explants giving rise to transgenic plants). The speed and efficiency of regeneration enabled the isolation of transgenic shoots 5–6 weeks after inoculation with A. tumefaciens. This line was also self-compatible, enabling the production of seed without the need for hand-pollination. A genetically uniform DH genotype, with an associated genetic map, make DH AG1012 highly desirable as a potential model B. oleracea genotype for studying gene function. The possibility of applying the same phenotypic tissue culture markers to other Brassica species is discussed.  相似文献   

16.
This paper presents a hydroponic system for culturing and maintaining the VAM fungus Glomus intraradices in symbiosis with linseed (Linum usitatissimum L.) under greenhouse conditions in pure nutrient solution. It was possible to obtain large quantities of mycorrhizal host plant roots as well as extramatrical mycelium and chlamydospores free of impeding residues of solid substrate components. Starting from linseed donor plants inoculated in sand and transferred to the nutrient solution, new infections arose within the fast growing root system, hyphae spread out into the liquid and infected mycorrhiza-free receptor plants. Data for infection rates and plant growth parameters are presented. In comparsion to other culture systems for VAM fungi, the advantages of this hydroponic system are discussed and potential uses suggested.  相似文献   

17.
This study aimed at establishing a protocol to increase the number of regenerated shoots and to limit the recovery of “escapes” during the regeneration of transgenic flax plants (cv Barbara). Here, we describe how light, adapted media and selection scheme could stimulate the transformation process, the organogenic potentiality of calli (by a factor of 3.2) and accelerate the transgenic shoot regeneration (by a factor of about 2). On comparison of the transformation rate observed while using low light (LL) and high light (HL) a considerable enhancement from 0.12 to 5.7% was evident. The promotive effect of light might also had a direct beneficial effect on transgenic plant production time leading to a reduction of more than 4 months in the time need to obtain transgenic seeds. All data indicate that HL plays a role on growth and on protein, rubisco and pigment contents by stimulating the gene implicated in photosynthetic and Calvin cycle processes.  相似文献   

18.
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.  相似文献   

19.
Laine  E.  Lamblin  F.  Lacoux  J.  Dupre  P.  Roger  D.  Sihachakr  D.  David  A. 《Plant Cell, Tissue and Organ Culture》2000,63(1):77-80
Flax (Linum usitatissimum L.) hypocotyls were cultivated on regeneration media containing various concentrations of kanamycin (an aminoglycoside antibiotic commonly used to select transgenic plant material) solidified with three different gelling agents: gellan gum, agar and a mixture of both. The inhibitory effect of kanamycin on bud regeneration was analyzed. A significant interaction was observed between the nature of the gelling agent and the kanamycin concentration. The antibiotic concentration needed to strongly inhibit bud production varied greatly with the nature of the gelling agent. Gellan gum lowered the inhibitory effect of kanamycin. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Progeny of a flax (Linum usitatissimum L. cv McGregor) plant, regenerated from a cell line selected in vitro for salt tolerance (designated STS-II) was tested for its performance over two generations in normal and in saline soil against its parent variety. Germination, seedling height, flowering, seed set and seed yield in controlled greenhouse conditions were recorded. The putative salt tolerant line was superior in saline soil for all parameters measured, indicating that the mechanism selected in cells in vitro was also active in whole plants, and that the trait is genetically stable and seed transmitted. Unexpectedly, the STS-II line was also superior in the normal, non-stressed soil, indicating that the selected trait is not limited to salt tolerance specifically, suggesting a more general mechanism, such as a general increase in vigor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号