首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

2.
A bisexual species of the genus Artemia (Crustacea, Phyllopoda), Artemia franciscana Barigozzi of San Francisco Bay and a parthenogenetic population of Artemia sp. of Tsing-Tao (China), both with 42 chromosomes, were compared with respect to the microscopic structure of the interphase larval nucleus, the microscopical structure of the prophase chromosomes and the DNA structure. — Artemia franciscana exhibits several chromocenters in the resting nucleus, heterochromatic blocks located at the end of the prophase chromosomes, and a large amount of repetitive DNA (Alu I 110-bp fragments). The other Artemia sp. lacks chromocenters, heterochromatic blocks in the chromosomes, and the Alu I DNA. The two populations thus differ by a remarkable amount of repetitive DNA.The authors dedicate this paper to Professor Hans Bauer, on the occasion of his 80th birthday  相似文献   

3.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

4.
Oogonia undergo numerous mitotic cell cycles before completing the last DNA replication and entering the meiotic prophase I. After chromosome pairing and chromatid exchanges between paired chromosomes, the oocyte I remains arrested at the diplotene stage of the first meiotic prophase. Oocyte growth then occurs independently of cell division; indeed, during this growth period, oocytes (4n DNA) are prevented from completing the meiotic divisions. How is the prophase arrest regulated? One of the players of the prophase block is the high level of intracellular cAMP, maintained by an active adenylate cyclase. By using lethal toxin from Clostridium sordellii (LT), a glucosyl-transferase that glucosylates and inactivates small G proteins of the Ras subfamily, we have shown that inhibition of either Ras or Rap or both proteins is sufficient to release the prophase block of Xenopus oocytes in a cAMP-dependent manner. The implications of Ras family proteins as new players involved in the prophase arrest of Xenopus oocytes will be discussed here.  相似文献   

5.
The organization of DNA in the mitotic metaphase and polytene chromosomes of the fungus gnat, Sciara coprophila, has been studied using base-specific DNA ligands, including anti-nucleoside antibodies. The DNA of metaphase and polytene chromosomes reacts with AT-specific probes (quinacrine, DAPI, Hoechst 33258 and anti-adenosine) and to a somewhat lesser extent with GC-specific probes (mithramycin, chromomycin A3 and anticytidine). In virtually every band of the polytene chromosomes chromomycin A3 fluorescence is almost totally quenched by counterstaining with the AT-specific ligand methyl green. This indicates that GC base pairs in most bands are closely interspersed with AT base pairs. The only exceptions are band IV-8A3 and the nucleolus organizer on the X. In contrast, quinacrine and DAPI fluorescence in every band is only slightly quenched by counterstaining with the GC-specific ligand actinomycin D. Thus, each band contains a moderate proportion of AT-rich DNA sequences with few interspersed GC base pairs. — The C-bands in mitotic and polytene chromosomes can be visualized by Giemsa staining after differential extraction of DNA and those in polytene chromosomes by the use of base-specific fluorochromes or antibodies without prior extraction of DNA. C-bands are located in the centromeric region of every chromosome, and the telomeric region of some. The C-bands in the polytene chromosomes contain AT-rich DNA sequences without closely interspered GC base pairs and lack relatively GC-rich sequences. However, one C-band in the centromeric region of chromosome IV contains relatively GC-rich sequences with closely interspersed AT base pairs. — C-bands make up less than 1% of polytene chromosomes compared to nearly 20% of mitotic metaphase chromosomes. The C-bands in polytene chromosomes are detectable with AT-specific or GC-specific probes while those in metaphase chromosomes are not. Thus, during polytenization there is selective replication of highly AT-rich and relatively GC-rich sequences and underreplication of the remainder of the DNA sequences in the constitutive heterochromatin.  相似文献   

6.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

7.
Comparative genomic hybridization (CGH) was used to identify and probe sex chromosomes in several XY and WZ systems. Chromosomes were hybridized simultaneously with FluorX-labelled DNA of females and Cy3-labelled DNA of males in the presence of an excess of Cot-1 DNA or unlabelled DNA of the homogametic sex. CGH visualized the molecular differentiation of the X and Y in the house mouse, Mus musculus, and in Drosophila melanogaster: while autosomes were stained equally by both probes, the X and Y chromosomes were stained preferentially by the female-derived or the male-derived probe, respectively. There was no differential staining of the X and Y chromosomes in the fly Megaselia scalaris, indicating an early stage of sex chromosome differentiation in this species. In the human and the house mouse, labelled DNA of males in the presence of unlabelled DNA of females was sufficient to highlight Y chromosomes in mitosis and interphase. In WZ sex chromosome systems, the silkworm Bombyx mori, the flour moth Ephestia kuehniella, and the wax moth Galleria mellonella, the W chromosomes were identified by CGH in mitosis and meiosis. They were conspicuously stained by both female- and male-derived probes, unlike the Z chromosomes, which were preferentially stained by the male-derived probe in E. kuehniella only but were otherwise inconspicuous. The ratio of female:male staining and the pattern of staining along the W chromosomes was species specific. CGH shows that W chromosomes in these species are molecularly well differentiated from the Z chromosomes. The conspicuous binding of the male-derived probe to the W chromosomes is presumably due to an accumulation of common interspersed repetitive sequences. Received: 6 January 1999; in revised form: 28 January 1999 / Accepted: 11 February 1999  相似文献   

8.
In most eukaryotic organisms, recombination events leading to exchanges between homologous chromosomes link the homologs in a manner that allows their proper attachment to the meiotic spindle. In the yeast Saccharomyces cerevisiae these exchanges are initiated in early prophase as double-strand breaks in the DNA. These breaks are processed through a series of intermediates to yield mature crossovers late in prophase. The following experiments were designed to monitor the appearance of the earliest recombinant DNA strands formed in this process. A polymerase chain reaction assay was devised that allows the detection of recombinant strands at a known initiation site for meiotic recombination. The time and rate of appearance of recombinant strands was found to coincide with commitment to recombination, demonstrating that DNA strands bearing sequences from both parental chromosomes are rapidly formed after the initiation of meiotic recombination. Received: 22 July 1997 / Accepted: 25 February 1998  相似文献   

9.
Drosophila nasutoides has an extraordinary genome since 62% of its DNA resides in chromosome4. This element mainly consists of constitutive heterochromatin which does not polytenize. Earlier studies of heterochromatin attributed little attention to the fact that condensed chromosomes often vary in condensation. This paper reports that chromosomes of the same complement display different degrees and kinetics of condensation. InD. nasutoides, even sex specific differences can be observed. The results of a comparative microphotometric study on neuroblast metaphases in both sexes revealed the following picture. The process of chromosome condensation is not restricted to mitotic prophase but continues into the metaphase. The mean condensation is not equal for all chromosomes. In the metaphase of the female, Feulgen density increases from theX chromosome, via3 and2, to chromosome4. In the male, the order isX, 2, 3, Y, and4. During the metaphase of the male, chromosomes condense with similar kinetics. In contrast, chromosomes of the female display asynchrony as monitored by area and length determinations. TheX chromosomes of the female probably have enhanced shortening during prophase. This would explain the metaphase of the female where theX chromosomes shorten less than the autosomes, and why each of theX chromosomes is 15% shorter than theX chromosome in the metaphase of the male. Further differences were observed in the longitudinal and lateral compaction of the chromosomes in males and females. The sex chromosomes and chromosome3 condense by shortening, while chromosomes2 and4 preferentially reduce their diameter. The large amount of DNA engaged in heteropycnosis and the isochromosome nature allow the identification of chromosome4 during interphase. At this stage, a new category of extreme DNA packaging was detected. The interphase density of chromosome4 can exceed that of metaphase by a factor of up to 8. Two events account for this high degree of condensation:(1) the homologues are particularly associated due to somatic pairing and (2) the arms are further tightened as a result of pericentric folding. The features of the isochromosome suggest that the interaction of chromatids during interphase is essentially caused by specific DNA sequences. The data confirm that heteropycnosis not only interferes with gene expression but also strongly inhibits DNA synthesis in endocycles.  相似文献   

10.
Summary The objectives of this study were to determine if biotin-labelled total genomic DNA of rye (Secale cereale L.) could be used to (i) preferentially label rye meiotic chromosomes in triticale and (ii) detect translocation stocks at interphase and/or early prophase by in situ hybridization. Welsh triticale, a wheat-rye segmental amphiploid, and Kavkaz wheat, a wheat-rye translocation were used. The results indicated that labelled chromosomes of rye and unlabelled chromosomes of wheat could be observed throughout all meiotic stages in the triticale. For Kavkaz wheat, the presence of the translocated 1RS chromosome arm of rye was detected at the interphase or very early prophase stage. Rapid assessment of feasibility of gene transfers and detection of alien DNA in somatic cells at the interphase stage by in situ hybridization allows for rapid decision-making and saves time and expense in plant breeding programs.Plant Research Centre Contribution No. 1276  相似文献   

11.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

12.
Feitoza L  Guerra M 《Genetica》2011,139(3):305-314
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.  相似文献   

13.
Uzi Nur 《Chromosoma》1982,85(4):519-530
In male coccids with the Comstockiella chromosome system, the set of chromosomes of paternal orgin becomes heterochromatic (H) during early cleavage. Just prior to prophase I of spermatogenesis, some of the H chromosomes are destroyed; the rest are eliminated following meiosis. In this report a Comstockiella sequence is described from Dactylopius opuntiae (2n=10) in which one chromosome pair is about three times longer than the others. During prophase I the number of small H chromosomes present varied from cyst to cyst, but the long H chromosome was present in every cyst. These observations provide the best evidence to date that in the Comstockiella system a particular chromosome may always escape destruction. An analysis of Kitchin's (1975) data about the frequency of prophase I cysts with 1–4 H chromosomes in three species of Parlatoria with 2n = 8 suggested that in these species chromosomes of similar size may have very different probabilities of being destroyed. Evidence that in other species with the Comstockiella system a particular H chromosome is always retained is reviewed, and the possibility that in Ancepaspis tridentata the variation in the length of the H chromosome retained is due to the partial destruction of the longest chromosome is discussed.  相似文献   

14.
Prophase chromosomes of growing oocytes from thelytokous, viviparous females of Amphorophora tuberculata Brown and Blackman (n=2) were studied using a modified propionic acid squash technique with Feulgen staining. In early prophase, prior to the growth phase of the oocyte, the X chromosomes are partially condensed and looped together so that all four ends appear to be associated. Later in prophase the X chromosomes separate in oocytes destined to be female, but remain associated in presumptive male oocytes. The autosomes condense gradually throughout prophase. The nucleus of the presumptive male oocyte is further characterised by the formation of a spherical Feulgen-positive body, which attains a large size (7 m diameter) in late prophase. At this stage, the X chromosomes are no longer visible as separate entities, and are apparently included in the spherical body. At metaphase this disappears, leaving the X chromosomes still united as a condensed bivalent. The spherical body seems to have nucleolar as well as chromatin constituents; nucleolar organisers are present at the ends of the X chromosomes where it first arises. It may function in maintaining the cohesion between the X chromosomes through prophase, and could also facilitate correct orientation of the X bivalent on the spindle of the maturation division. As sex determination in aphids is controlled by juvenile hormone concentration, it appears that the hormone may interact with the X chromosomes during prophase, bringing about their separation in female oocytes, perhaps by inhibiting the formation of the spherical body.  相似文献   

15.
Summary An examination of the correlation between RNA and protein synthesis occurring during meiosis and cytological development was made in Trillium erectum microsporocytes. Various reagents known to act at various steps of protein biosynthesis were administered to cultured buds at different developmental stages with more or less effect depending on the stage rather than the reagent.Syntheses were found to be necessary for continued development of the microsporocytes during early prophase. Synthesis during meiotic prophase was also necessary for the maintainance of the condensed state of the late prophase chromosomes, the initial separation of the paired homologous chromosomes, and the orderly function of the spindle. Cytokinesis was readily disturbed at all treatment times. Pairing of homologous chromosomes was not affected and the prespecification of pairing is believed to occur at or near the time of DNA synthesis.The results indicate that the syntheses occurring during meiosis can be correlated with cytological developmental processes.Based on a thesis presented in partial fulfillment of the requirements for the Ph. D. degree at the University of Illinois, Department of Botany.  相似文献   

16.
The quinacrine-fluorescence patterns of the chromosomes of Allium carinatum   总被引:1,自引:1,他引:0  
Canio G. Vosa 《Chromosoma》1971,33(4):382-385
Quinacrine staining of somatic chromosomes in Allium carinatum shows intense fluorescence patterns which allow their recognition and the study of their degree of heterozygosity. This makes possible the study of chromosome polymorphism at a level until now impossible to achieve. The intense fluorescence patterns correspond to heterochromatic segments visible as darkly stained regions in prophase chromosomes. Interphase nuclei show fluorescent chromocentres of the same size and distribution as in conventionally stained preparations, and there is a good correlation between intense fluorescence patterns, late replicating DNA and heterochromatin.  相似文献   

17.
This paper studies the process and features of chromosome construction in mitotic prophase cells of Allium cepa. The results showed that a prominent reorganization of chromatin occurred during G2-early prophase. The 250–400 nm thick compact chromatin threads in G2 nuclei began to disorganize into about 30, 100 and 220 nm chromatin fibres which constituted the loosely organized chromosome outlines in early prophase before chromosome condensation. In middle prophase, chromosome condensation was characterized by the formation of many condensed regions (aggregates of chromatin), which increased in size (1–1.5 m) when prophase proceeded. Meanwhile, the chromatin threads that constituted and connected the condensed regions became increasingly thicker (120–250 nm). In late prophase adjacent condensed regions fused to form cylinder-shaped chromosomes. Based on these observations, we come to the conclusion that the construction of prophase chromosomes is a two-step process, that is, the reorganization and condensation of chromatin. In addition, we report the study of silver-stained, DNA- and histone-depleted prophase chromosomes, describe morphological features of the non-histone protein (NHP) residue in early, middle and late prophase chromosomes, and discuss the roles of NHPs in chromosome construction.  相似文献   

18.
Summary Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Löve, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.  相似文献   

19.
Summary DNA sequences reassociating within a Cot value of 1.8×10–1 and those producing a light satellite in a CsCl density gradient were isolated fromVicia faba DNA and hybridizedin situ on squashes of roots of the same species. Silver grains were seen to be scattered over both the interphase nuclei and the metaphase chromosomes after hybridization with fast renaturing DNA sequences, indicating these are fairly regularly interspersed in theV. faba genome. Clustered labeling occurred after hybridization with satellite DNA sequences, indicating these are clustered in the genome. The localization of satellite DNA in chromosomes appeared to correspond closely to the position of the bright bands detectable after staining with quinacrine mustard. After hybridization with both DNA probes, labeling intensity over the nuclei of meristematic cells was higher than that over the nuclei of differentiating and/or differentiated cells. These results are discussed in relation to the structure of the cell nucleus, the mechanism of quinacrine banding and to previous data suggesting underrepresentation of nuclear repeated DNA sequences in differentiatingV. faba root cells.  相似文献   

20.
Summary Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B S and 6 B L) and a non-related (5 B L) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement — the Rabl orientation — and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.Dedicated to Professor Dr. Marcus M. Rhoades on his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号