首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat molar enamel has been studied by sectioning the enamel along various planes, and observing the etched surfaces in the SEM. It was found that the prism pattern was much more variable than in rat incisor enamel. Regions without prism decussation seemed to dominate in the occlusal half of the molars. Where present, prism decussation was of the uniserial lamellar type, but it varied considerably in distribution, extent, and distinctness. Prism decussation seemed to have a predilection for the cervical enamel, and was almost absent in the enamel on the occlusal surface. The interprismatic substance showed a characteristic configuration: In the inner enamel it appeared in the form of radially oriented sheets, which tended to delimit radially directed, single lines of prisms. In regions with prism decussation these single lines of prisms encompassed prisms belonging to different prism lamellae. In the outer part of the enamel the interprismatic substance exhibited a honeycomb appearance. The similarities and differences between the prism patterns of rat incisor and molar enamel may be of importance for understanding the mechanisms of amelogenesis, especially for the recognition of factors controlling the movement of ameloblasts.  相似文献   

2.
Development, structure and function of rhinoceros enamel   总被引:1,自引:0,他引:1  
Vertical enamel prism decussation in the inner-layer enamel of rhinoceroses occurs as the result of vertical translation, in opposite senses, of zones of ameloblasts, which begins very shortly after amelogenesis commences at the enamel-dentine junction. Prisms in the centre of the decussating zones are stacked in the Pattern 3 arrangement. Zone boundary prisms adopt intermediate orientations, are locally nearly perpendicular to the enamel surface, and have a cylindrical, Pattern 1 cross-section. Decussation also continues in the outer-layer enamel, but the prisms all have occlusal-going courses: the occlusal-going zones of the inner enamel continue as the more occlusally oriented zones of the outer layer. Abrasion resistance to diamond polishing and soft abrasive projectile erosion (air-polishing with NaHCOs) and resistance to ion beam erosion is greater with distance from the nearest prism boundary discontinuity. Polished surface areas containing longitudinally sectioned prisms are more prone to 'air-polishing' and 'airbrading' erosion than areas with transversely sectioned prisms. These observed relationships fully explain the relief developed at natural wear surfaces.  相似文献   

3.
Abstract. Enamel formation in the developing tooth organ is the product of epithelial-mesenchymal interactions which result in the differentiation of ameloblasts, the secretion of enamel proteins, and the production of a highly organized extracellular matrix. The three-dimensional organization of enamel prisms is species-specific: irregular polygonshaped in rabbit and rectangular-shaped in mouse. We designed experiments to test the hypothesis that three-dimensional organization of enamel prism formation is genetically determined by epithelium; the prediction being that speciesspecific enamel prism pattern formation is expressed independent of mesenchymal instructions. Our strategy employs scanning electron microscopy to examine enamel prism patterns formed during rabbit and mouse tooth morphogenesis in situ and in vitro, and to then determine the specific tissue type required for regulating these patterns using heterotypic tissue recombinations. Morphometric analyses demonstrated that cap stage tooth organs cultured on the chick chorioallantoic membrane (CAM) formed enamel prisms equivalent to prism patterns observed for in situ controls. Heterotypic tissue recombinations, using cap stage molar organs, formed rabbit-like prisms with rabbit epithelium/mouse mesenchyme, and mouse-like prisms with mouse epithelium/rabbit mesenchyme. These results indicate that dental papilla mesenchyme has no apparent influence on enamel prism pattern formation. Enamel prism pattern appears to be genetically regulated by the inner enamel epithelium.  相似文献   

4.
Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.  相似文献   

5.
Maxillary and mandibular molars of the American opossum, Didelphis virginiana L., were viewed in the scanning electron microscope (SEM) after acid-etching or after cutting and acid-etching. Observations were made on enamel prism patterns as they relate to functional properties of the tooth at a particular site. Molars at different stages of wear were also observed under a dissecting microscope; worn surfaces were correlated with function and enamel ultrastructure. Pounding surfaces of molar cusps wear more rapidly than near-vertical shearing surfaces or crushing basins (i.e. the trigon and talonid basin). Pounding surfaces are subjected to abrasion by food and arc not normally involved in tooth-tooth contact. Near-vertical shearing surfaces and basins used for crushing do experience tooth-tooth contact, but are surprisingly more resistant to wear. Prisms at pounding sites approach the occlusal surface at a near 90° angle and are surrounded with very thick interprismatic (IP) enamel parallel to the occlusal surface of the tooth. The pounding pattern is present at tips of cusps and at occlusal surfaces of ridges of the tooth. At near-vertical shearing surfaces, the prisms approach the outer surface obliquely and are surrounded with IP crystals which are perpendicular to the vertical surface. The angle between prismatic and IP enamel in these patterns is 60–90° in a cervical to occlusal direction. In basins of the tooth used principally for crushing and some shearing, IP enamel is perpendicular to the changing slope of the basin and the prisms are usually at a 55–65° angle to the IP enamel. When the pounding and shearing-crushing patterns meet at a ridge, a distinct seam is observed. Pounding forces occur parallel to the long axis of the prisms and perpendicular to the thick IP enamel (i.e. perpendicular to the long axis of the IP crystals) lying on either side of the prisms. Shearing and crushing forces occur at an oblique angle to the prism, and interprismatic enamel is more evenly distributed about the prism. A spiral pattern is found at the bottoms of the trigon and talonid basins, but not at the bottom of the trigonid which is a non-occluding basin. It is concluded that the differential rates of wear of the enamel surfaces are necessary in maintaining the sharp cutting edges and effective crushing basins of the tribosphenic molar, and the ultrastructural arrangements of the enamel prisms are of functional significance.  相似文献   

6.

Background

N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development.

Methodology/Principal Findings

The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ.

Conclusions/Significance

The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous increase in E-cadherin expression due to N-cadherin ablation in a healthy developing tissue.  相似文献   

7.
Summary Enamel proteins were extracted from the newly formed layer of immature porcine enamel, and the 25 kDa amelogenin, 89 kDa enamelin and 13–17 kDa nonamelogenins were purified. Specific antisera were raised against these proteins. Antibodies specific to the C-terminal region (residues 149–173) of the 25 kDa amelogenin were generated by absorption of the anti-25 kDa amelogenin serum with 20 kDa amelogenin, which contains residues 1–148 of the antigen. Immunoelectrotransfer blotting of the extracted porcine enamel proteins showed that the anti-25 kDa amelogenin serum recognized the 25 kDa and other low and high molecular weight amelogenins. The C-terminal specific anti-25 kDa amelogenin serum reacted only with amelogenins having molecular weights over 23 kDa. The anti-89 kDa enamelin serum recognized the 89 kDa enamelin and lower molecular weight proteins, but neither the amelogenins nor the 13–17 kDa nonamelogenins. The antiserum against the 13–17 kDa nonamelogenins showed no cross reactivity to the 89 kDa enamelin, but recognized higher molecular weight nonamelogenins. In immunohistochemical preparations of the porcine tooth germs, the 25 kDa amelogenin-like immunoreactivity over immature enamel decreased in a gradient from the enamel surface to the middle layer. In the inner layer immunoreactivity was concentrated over the prism sheaths. The C-terminal specific 25 kDa amelogenin-like immunoreactivity was intense at the outer layer of immature enamel and decreased sharply toward the middle layer. Prism sheaths were intensely stained by the antiserum to the 13–17 kDa nonamelogenins. The 89 kDa enamelin-like immunoreactivity over enamel prisms was intense at the outer layer and decreased toward the middle layer. Staining by the anti-89 kDa enamelin serum of prism sheaths was faint. In immature rat incisor enamel, the C-terminal specific 25 kDa amelogenin antiserum demonstrated a staining pattern similar to that in the immature enamel of the pig. Distinct 13–17 kDa nonamelogenin-like and 89 kDa enamelin-like immunoreactivities were found especially in the layer adjacent to the Tomes' process. We conclude that some enamel proteins are degraded soon after their secretion from the secretory ameloblast in the rat and the pig. The specific enamel proteins which reacted with the antiserum to the 13–17 kDa nonamelogenins seem to be involved with the formation of prism sheaths in immature porcine enamel, but not in rat incisor enamel.  相似文献   

8.
To determine the prism sheath configurations in human cuspal enamel 80 teeth were initially ground to produce flat surfaces through the following planes: a horizontal series at successively greater distances from the dentinoenamel junction and longitudinally through the center of the cusps. Individual teeth were suspended in an acid-alcohol solution (1 cm3 conc. HCl in 100 cm3 95% ethanol) at 37°C for seven to ten days. The treatment “softened” the enamel to a depth of approximately 1 mm. The teeth were embedded in Epon and sectioned at 0.5 to 10 μm with a diamond knife. Thick and thin ground sections for phase contrast microscopy and acid-etched ground sections for Nomarski differential interference microscopy were prepared through the same regions. In thicker longitudinal sections, the prisms in gnarled enamel formed a zig-zag pattern which was unlike the twisting pattern generally observed in ground sections. The thinnest transverse sections showed the sheath outlines to be dramatically different from those seen elsewhere in the enamel. Some prism sheaths were circular, others were in the form of spirals. What could be described as sheaths within sheaths were also seen. In the thinnest longitudinal sections the prisms were seen to be elongated and discontinuous. Sheath outlines in enamel adjacent to the central core of gnarled enamel were similar to those described elsewhere in the body of the enamel. Keyhole, modified keyhole patterns and arcade forms were the dominant sheath patterns. Other atypical sheath configurations were seen scattered throughout this region.  相似文献   

9.
Summary Rapidly frozen upper incisor teeth of rats and molar teeth of calves were freeze fractured, freeze dried and dry dissected in preparation for energy dispersive x-ray emission microanalysis in the scanning electron microscope.Successive zones of ameloblasts adjacent to maturing rat incisor enamel were examined, beginning with cells adjacent to the least mature enamel and progressing to cells over increasingly more mature enamel. Pronounced K 1, 2, x-ray peaks were obtained for P, S, Cl, K and Fe but not for Ca. Ca levels were also very low compared with P, S, Cl and K in calf molar maturation ameloblasts, whereas they were high in the distal poles of the secretory odontoblasts in the same specimens.The findings indicate that both intra- and extracellular Ca levels are extremely low in maturation ameloblasts. It is concluded that Ca is neither stored nor concentrated in large amounts by the maturation ameloblasts prior to its entry into the enamel. The suggestion is made that the maturation ameloblasts might regulate entry of calcium into enamel by serving as a selective barrier.  相似文献   

10.
Slightly etched prisms of human dental enamel surfaces were examined in the scanning electron microscope. The crystals in the central region of prisms showed a denser arrangement, similar to the crystals on the periphery, which determine their form here. A crevice-like space could be observed between the central and the peripheral region of a prism. The prisms on the enamel surface showed a wide variety in shape being either of fish-scale or key-hole form, in other places fully irregular. There was no uniform prism on a single tooth, and an interprismatic substance was never found. On the surface of a deciduous tooth a prismless enamel surface was observed consisting of edges of crystallites, which did not unite to prism formation.  相似文献   

11.
Electron microscope and electron diffraction studies of developing embryonic bovine enamel have revealed the organization of the organic matrix and the inorganic crystals. The most recently deposited inorganic crystals located at the ameloblast-enamel junction are thin plates, approximately 1300 A long, 400 A wide, and 19 A thick. During maturation of the enamel, crystal growth occurs primarily by an increase in crystal thickness. Statistical analyses failed to show a significant change in either the width or the length of the crystals during the period of maturation studied. Even in the earliest stages of calcification, the crystals are organized within the prisms so that their long axes (c-axes) are oriented parallel to the long axes of the prisms but randomly distributed about their long axes. With maturation of the enamel, the crystals become more densely packed and more highly oriented within the prisms. The organic matrix in decalcified sections of enamel is strikingly similar in its over-all organization to that of the fully mineralized tissue. When viewed in longitudinal prism profiles, the intraprismatic organic matrix is composed of relatively thin dense lines, approximately 48 A wide, which are relatively parallel to each other and have their fiber axes parallel to the long axes of the prisms within which they are located. Many of these dense lines, which have the appearance of thin filaments, are organized into doublets, the individual 48 A wide filaments of the doublets being separated by approximately 120 A. When observed in oblique prism profiles, the intraprismatic organic matrix is likewise remarkably similar in general orientation and organization to that of the fully mineralized tissue. Moreover, the spaces between adjacent doublets or between single filaments have the appearance of compartments. These compartments, more clearly visualized in cross- or near cross-sectional prism profiles, are oval or near oval in shape. Therefore, the appearance of the intraprismatic organic matrix (in longitudinal, oblique, and cross-sectional prism profiles) indicates that it is organized into tubular sheaths which are oriented with their long axes parallel to the long axes of the prisms in which they are located, but randomly oriented about their own long axes, an orientation again remarkably "blue printing" that of the inorganic crystals. The predominant feature of the walls of the tubular sheaths, when viewed in cross- or near cross-section, is that of continuous sheets, although in many cases closely packed dot-like structures of approximately 48 A were also observed, suggesting that the wall of the sheaths consists of a series of closely packed filaments. The 48 A wide dense lines (filaments) representing the width of the sheath wall were resolved into two dense strands when viewed in longitudinal prism profiles. Each strand was 12 A wide and was separated by a less electron-dense space 17 A wide. The intraprismatic organic matrix is surrounded by a prism sheath which corresponds in mineralized sections to the electron-lucent uncalcified regions separating adjacent prisms. Structurally, the prism sheaths appear to consist of filaments arranged in basket-weave fashion.  相似文献   

12.
In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves.  相似文献   

13.
Summary The migration of the ameloblasts in the continuously erupting incisors of the rat is accompanied by cell loss. Ameloblasts degenerate near the mesial and lateral cemento-enamel junctions in the secretory zone and in the middle two thirds of the region of postsecretory transition, degeneration being most marked where these areas merge. These findings support the hypothesis that the prism decussation in the enamel results from alternating transverse rows of secretory ameloblasts sliding past each other whilst elaborating their rods. The distribution of the degenerating cells suggests, however, that the sliding cell rows are not exactly transverse but arcuate, with the opening facing incisally. The progress of structural alterations of the nuclei in the degenerating ameloblasts appears to follow the pattern earlier described in vinblastine-damaged ameloblasts.  相似文献   

14.
This study describes the molar enamel microstructure of seven lemurid primates: Hapalemur griseus, Varecia variegata, Lemur catta, Lemur macaco, Lemur fulvus rufus, Lemur fulvus fulvus, and Lemur fulvus albifrons. Contrary to earlier accounts, which reported little or no prism decussation in lemurid enamel, both Lemur and Varecia molars contain a prominent inner layer of decussating prisms (Hunter-Schreger bands), in addition to an outer radial prism layer, and a thin, nonprismatic enamel surface layer. In contrast, Hapalemur enamel consists entirely of radial and, near the surface, nonprismatic enamel. In addition, for all species, prism packing patterns differ according to depth from the tooth surface, and for all species but Varecia (which also has the thinnest enamel of any lemurid), average prism area increases from the enamel-dentine junction to the surface; this may be a developmental solution to the problem of accommodating a larger outer surface area with enamel deposited from a fixed number of cells. Finally, contradicting some previous reports, Pattern 1 prisms predominate only in the most superficial prismatic enamel. In the deeper enamel, prism cross-sections include both closed (Pattern 1) and arc-shaped (Pattern 2 or, most commonly, Pattern 3). This sequence of depth-related pattern change is repeated in all taxa. It should also be emphasized that all taxa can exhibit all three prism patterns in their mature enamel. The high degree of quantitative and qualitative variation in prism size, shape, and packing suggests that these features should be used cautiously in phylogenetic studies. Hapalemur is distinguished from the other lemurids by unique, medially constricted or rectangular prism cross-sections at an intermediate depth and the absence of prism decussation, but, without further assessment of character polarity, these differences do not clarify lemurid phylogenetic relations. Some characters of enamel microstructure may represent synapomorphies of Lemuridae, or of clades within Lemuridae, but homoplasy is likely to be common. Homoplasy of enamel characters may reflect functional constraints. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Rapidly frozen upper incisor teeth of rats and molar teeth of calves were freeze fractured, freeze dried and dry dissected in preparation for energy dispersive x-ray emission microanalysis in the scanning electron microscope. Successive zones of ameloblasts adjacent to maturing rat incisor enamel were examined, beginning with cells adjacent to the least mature enamel and progressing to cells over increasingly more mature enamel. Pronounced Kalpha1,2 x-ray peaks were obtained for P, S, Cl, K and Fe but not for Ca. Ca levels were also very low compared with P, S, Cl and K in calf molar maturation ameloblasts, whereas they were high in the distal poles of the secretory odontoblasts in the same specimens. The findings indicate that both intra- and extracellular Ca levels are extremely low in maturation ameloblasts. It is concluded that Ca is neither stored nor concentrated in large amounts by the maturation ameloblasts prior to its entry into the enamel. The suggestion is made that the maturation ameloblasts might regulate entry of calcium into enamel by serving as a selective barrier.  相似文献   

16.
17.
18.
Enamelins comprise an important family of the enamel matrix proteins. Porcine tooth germs were investigated immunochemically and immunocytochemically using two antibodies: a polyclonal antibody raised against the porcine 89-kDa enamelin (89 E) and an affinity purified anti-peptide antibody against the porcine enamelin amino-terminus (EN). Immunochemical analysis of layers of immature enamel from the matrix formation stage detected immunopositive protein bands ranging from 10 kDa to 155 kDa in the outer layer enamel sample irrespective of the antibodies used. In contrast, the middle and inner enamel layer mainly contained lower molecular weight enamelins. In immunocytochemical analyses of the differentiation stage, 89 E stained enamel matrix islands around mineralized collagen fibrils of dentin, while EN stained both enamel matrix islands and stippled material. At the matrix formation stage, both antibodies intensely stained enamel prisms located in the outer layer. In the inner layer, 89 E moderately stained enamel matrix homogeneously, while EN primarily stained the prism sheath. The intense immunoreaction over the surface layer of enamel matrix at the matrix formation stage, following staining with 89 E and EN, disappeared by the end of the transition stage and the early maturation stage, respectively. The Golgi apparatus and secretory granules in the ameloblasts from the late differentiation stage to the transition stage were immunostained by both antibodies. These results suggest that expression of enamelin continues from late differentiation to the transition stage and the cleavage of N-terminal region of enamelin occurs soon after secretion. Some enamelin degradation products, which apparently have no affinity for hydroxyapatite crystals, concentrate in the prism sheaths during enamel maturation.  相似文献   

19.
Summary Teeth of three macropod species, M. giganteus, W. bicolor and P. concinna, have been studied using the techniques of light microscopy, scanning- and transmission-electron microscopy and hardness measurement. Light microscope observations showed that the teeth of these species had a translucent enamel region close to the dentine and an outer opaque enamel region at the tooth's surface. These regions were not related to the presence or absence of tubules which are a characteristic feature of marsupial enamel. Hardness tests showed that the opaque enamel was softer than the translucent enamel. Scanning electron microscope observations revealed that there was no correlation between any particular prism packing or orientation and the opaque and translucent enamel regions. Transmission electron microscope observations showed that the translucent enamel region consisted of well defined prisms and well packed, lath-like crystals, whereas the opaque enamel was disrupted by voids (which ranged in size from enlarged micropores to about 2 m in diameter in extreme cases) between crystals and some randomly oriented, loosely packed crystals. This disruption within the opaque enamel region was more common at prism boundaries but pockets of disrupted enamel were also found within prisms and interprismatic regions. The opacity of the enamel was caused by scattering of light from the voids. The ultrastructure of the opaque enamel region indicated that this region was hypomineralized; hardness tests and polarized light microscope observations were consistent with these results.  相似文献   

20.
Enamel-producing cells (ameloblasts) pass through several phenotypic and functional stages during enamel formation. In the transition between secretory and maturation stages, about one quarter of the ameloblasts suddenly undergo apoptosis. We have studied this phenomenon using the continuously erupting rat incisor model. A special feature of this model is that all stages of ameloblast differentiation are presented within a single longitudinal section of the developing tooth. This permits investigation of the temporal sequence of gene and growth factor receptor expression during ameloblast differentiation and apoptosis. We describe the light and electron microscopic morphology of ameloblast apoptosis and the pattern of insulin-like growth factor-1 receptor expression by ameloblasts in the continuously erupting rat incisor model. In the developing rat incisor, ameloblast apoptosis is associated with downregulated expression of the insulin-like growth factor-1 receptor. These data are consistent with the hypothesis that ameloblasts are hard wired for apoptosis and that insulin-like growth factor-1 receptor expression is required to block the default apoptotic pathway. Possible mechanisms of insulin-like growth factor-1 inhibition of ameloblast apoptosis are presented. The rat incisor model may be useful in studies of physiological apoptosis as it presents apoptosis in a predictable pattern in adult tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号