首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For 31 clinical strains of S. aureus the correlation between phenotype and genotype of resistance to macrolides, lincosamides and streptogramins B (MLSB) was established.. Phenotypes were determined on the basis of: susceptibility to erythromycin and clindamycin and the ability to an induction of the resistance (phenotypes S, susceptible; R , constitutive resistant, D, resistant after induction with erythromycin, D+, resistant after induction with erythromycin and with a presence of the small colonies inside inhibition zone between erythromycin and clindamycin discs), and on the basis of the resistance to spectinomycin (spR, resistant, spS, susceptible). Among examined S. aureus strains eight phenotypes of resistance to MLSB were recognized (the corresponding genotypes are given in brackets). Six phenotypes were typical: SspS (lack of MLS-B resistance genes), NEGspS (msrA/B, 1 strain), D+spS (ermCi, 4 strains),. DspR (ermAi, 11 strains and ermAi + msrA/B, 2 strains), RspR (ermAc, 4 strains and ermA + msrA/B,1 strain and ermA + ermC, 1 strain) and RspS (ermCc, 6 strains and ermB, 1 strain). Two rare phenotypes in two single strains were observed: SspR (ermAi, the strain with altered inducibility, inductor other than erythromycin) and DspS (ermAi, presumably mutation or lack of spc in Tn554).  相似文献   

2.
Streptococcus faecalis strain DS16 harbors two plasmids, a conjugative plasmid, pAD1, which encodes hemolysin and bacteriocin activities, and a nonconjugative plasmid, pAD2, encoding resistance to streptomycin, kanamycin, and erythromycin, the latter of which is inducible. The erythromycin resistance determinant is located on a 3.3-megadalton transposable element designated Tn917, which could be transposed to pAD1 as well as to two other plasmids, pAm gamma 1 and pAM alpha 1. When strain DS16 was exposed to low (inducing) concentrations of erythromycin for a few hours, the frequency of Tn917 transposition from pAD2 to pAD1 increased by an order of magnitude. This induction paralleled induction of erythromycin resistance and was prevented by exposing the cells to inhibitors of deoxyribonucleic acid, ribonucleic acid or protein synthesis. The exposure of strain DS16 to inducing concentrations of erythromycin also enhanced the frequency of erythromycin-resistant transconjugants appearing during mating. Initially, cointegrate molecules, whose molecular weights were approximately the sum of pAD1 and pAD2, accounted for these transconjugants; however, as the induction time increased, pAD1::Tn917 became increasingly prominent.  相似文献   

3.
Drug resistance and the transferability of resistance were examined in 218 Enterococcus faecium clinical isolates obtained from in-patients of a Japanese university hospital between 1990 and 1999. One hundred and sixty one isolates (73.9%) were drug-resistant and 127 (58.2%) isolates were resistant to two or more drugs. Vancomycin resistant E. faecium (VRE) was not isolated. The transferability of drug-resistance to an E. faecium strain was examined by broth or filter mating. Six (12.5%) of the 48 gentamicin resistance traits, and fifty (50%) of the 101 erythromycin resistance traits were transferred by filter mating. The gentamicin resistance traits of five isolates and the erythromycin resistance traits of four isolates were transferred to the recipient strains by both broth mating and filter mating at a frequency of about 10(-6) and 10(-5) per donor cell, respectively. The five gentamicin resistant strains were shown to harbor pMG1-like plasmids on the basis of their Southern hybridization with pMG1 (65.1 kbp, Gm(r)), which transfers efficiently between enterococci by broth mating. Each of the four erythromycin resistant transconjugants obtained by broth mating harbored a large conjugative plasmid (more than 100 kbp). The plasmids showed no homology with well-characterized enterococcal conjugative plasmids such as pAD1, pPD1, pAM(beta)1, pIP501 and pMG1 by Southern hybridization. Of the erythromycin resistance traits that transferred only by filter mating, it was found that the erythromycin resistance trait was conferred by a 47-kbp transposable element that transferred from the chromosome of the donor strain to different sites within the pheromone responsive plasmid pAD1 (60 kbp) of the recipient strain, suggesting that the erythromycin resistance trait was encoded on a conjugative transposon, which was named Tn950.  相似文献   

4.
The resistance determinants were transferred from clinical strains of enterococci to Staphylococcus aureus strains. As recipients methicillin-resistant and methicillin-susceptible strains were used and the filter-mating procedure was performed. The transconjugants resistant to erythromycin were obtained in the case of all recipients, in one case the vanA determinant conferring the resistance to vancomycin was transferred together with erythromycin resistance. However the resistance was very unstable and the level was not as high as in the case of Enterococcus faecalis donor strain. The vanA determinant was easily transferred between enterococcal strains by the conjugation and a transfer occurred of vanA alone or together with erythromycin resistance.  相似文献   

5.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

6.
Of 5 clinically isolated strains of Streptococcus pyogenes, 3 showed high-level resistance to erythromycin and lincomycin that was inducible by subinhibitory concentrations of these drugs (IR strains) while 2 strains exhibited constitutive erythromycin and lincomycin resistance (CR strains) which was expressed without prior exposure to low drug concentrations. The CR strain 15346 showed spontaneous loss of resistance whereas resistance in the other strains was quite stable even under curing conditions. The IR strain 13234 was found to be polylysogenic for at least 4 different phages designated P13234ma, mi, mu, and mo. Phage mo, antigenically distinct from the other three, was shown to mediate the transfer of the resistance determinant ERL1 of strain 13234. ERL1 if borne by appropriate strains was also transducible by the virulent phage A25. ERL1 behaved as a discrete genetic unit in transduction experiments, was not linked to either of two chromosomal regions governing resistance to antibiotics that affect the ribosome, could be transferred to recombination deficient hosts, represented a relatively large UV inactivation target, and showed no stimulation of transduction by low UV doses. These findings suggest that resistance to erythromycin and lincomycin in certain natural isolates of S. pyogenes is specified by, or under the control of, a plasmid.  相似文献   

7.
Resistance to erythromycin is genetically unstable in strains of Streptomyces coelicolor A3(2). The frequent loss of resistance as well as reversion of sensitive variants to the original unstable resistance phenotype excluded the possibility that plasmid elimination is involved. The spontaneous frequency of occurrence of sensitive clones was 0.14 to 1.5%, the rate of reversion ranging from 1.10(-6) to 1.10(-8). Resistance to erythromycin has been mapped on the chromosomes of two S. coelicolor A3(2) derivatives in different sites: between markers adeC (v 10) and ArgA1 in the strain A617, between pheA1 and SCP1 in the strain S18. It is suggested that genetic instability of erythromycin resistance determinants having chromosomal location is due to transposition of genetic material.  相似文献   

8.
A continuous-culture system was developed to study changes in the structure of Staphylococcus epidermidis populations exposed to subminimum inhibitory concentrations of erythromycin. Continuous-culture experiments were carried out in a dextrose-free, tryptic soy broth medium supplemented with lactic acid and sodium lactate (MTSB-D). The multiresistant (penicillin-, tetracycline-, and erythromycin-resistant) S. epidermidis strain NRC853 was subjected to a series of experiments: (i) growth individually in continuous culture in the absence and presence of erythromycin and (ii) growth in mixed culture with the erythromycin-susceptible S. epidermidis strain NRC852 in the absence and presence of erythromycin. Strain NRC853 produced colony morphology variants during continuous culture in the presence of 0.05 and 0.1 microgram of erythromycin per ml. Variants (A, B, and C) were different from their wild-type parent on the basis of colony size, sector pattern, and/or the ability to transmit light. A variants rapidly lost a 2.7-MDa tetracycline resistance plasmid. B and C variants formed an ermC plasmid multimer series from unit size to a 16-mer and exhibited an approximately twofold increase in erythromycin MIC over that of the wild-type parent. They slowly lost the tetracycline resistance plasmid. The small-colony B variant demonstrated an increased virulence in the neonatal mouse weight gain test and an increase in fibronectin binding compared with the wild-type parent. The presence of a competing strain drastically increased the frequency of all variants.  相似文献   

9.
A continuous-culture system was developed to study changes in the structure of Staphylococcus epidermidis populations exposed to subminimum inhibitory concentrations of erythromycin. Continuous-culture experiments were carried out in a dextrose-free, tryptic soy broth medium supplemented with lactic acid and sodium lactate (MTSB-D). The multiresistant (penicillin-, tetracycline-, and erythromycin-resistant) S. epidermidis strain NRC853 was subjected to a series of experiments: (i) growth individually in continuous culture in the absence and presence of erythromycin and (ii) growth in mixed culture with the erythromycin-susceptible S. epidermidis strain NRC852 in the absence and presence of erythromycin. Strain NRC853 produced colony morphology variants during continuous culture in the presence of 0.05 and 0.1 microgram of erythromycin per ml. Variants (A, B, and C) were different from their wild-type parent on the basis of colony size, sector pattern, and/or the ability to transmit light. A variants rapidly lost a 2.7-MDa tetracycline resistance plasmid. B and C variants formed an ermC plasmid multimer series from unit size to a 16-mer and exhibited an approximately twofold increase in erythromycin MIC over that of the wild-type parent. They slowly lost the tetracycline resistance plasmid. The small-colony B variant demonstrated an increased virulence in the neonatal mouse weight gain test and an increase in fibronectin binding compared with the wild-type parent. The presence of a competing strain drastically increased the frequency of all variants.  相似文献   

10.
Certain erythromycin-resistant strains of Staphylococcus aureus remain sensitive to other macrolide antibiotics. If these strains are exposed to low levels of erythromycin, resistance to other antibiotics is induced. The antibiotics to which resistance is induced by erythromycin include: other macrolides as well as lincosaminide, streptogramin (group B) antibiotics but not chloramphenicol, amicetin, streptogramin (group A) antibiotics, tetracyclines, and aminoglycosides. Hence erythromycin induces resistance exclusively towards inhibitors of 50S ribosomal subunit function and, thus far, only with respect to three of six known classes of inhibitors which act on this subunit. In the four strains tested, erythromycin did not induce resistance to pactamycin or bottromycin, to fusidic acid (which inhibits a function involving both subunits), or to other antibiotics which do not inhibit ribosomal function. Thus, by inducing resistance erythromycin could antagonize the action of other antibiotics, and a consistent pattern of antagonism was observed to each antibiotic class in all of the strains in which this could be tested, as well as to other antibiotic members of the same chemical class in each bacterial strain.  相似文献   

11.
The characterization of two new erythromycin-resistant mutants of HeLa cells is described. The strains ERY2305 and ERY2309 both exhibited resistance to erythromycin in growth assays and cell-free mitochondrial protein synthesis assays. The erythromycin resistance phenotype could not be transferred by cybridization. The mutation appeared to be encoded in the nucleus and inherited as a recessive trait. These two mutants, therefore, represent a new class of erythromycin-resistant mutants in human cells that is distinct from the cytoplasmically inherited mutation in strain ERY2301 described previously.  相似文献   

12.
The recipient capacity of the strains of Staph. epidermidis and Staph. areus belonging to different phage groups, as well as the possibility of epidemic distribution of the erythromycin resistance marker among the clinical staphyloccal strains on using the defective phage obtained from strain 8325 P IIde was studied. The defective phage P IIde may be the source of epidemic distribution of the drug resistance among the competent strains of Staph. aureus. All erythromycin sensitive strains of Staph. aureus lysed by the phages of groups I and III proved to be competent recipients of the erythromycin resistance marker. The strains of Staph. aureus of phage group II and phage type 80/81, as well as the strains of Staph. epidermidis were not competent recipients under our experimental conditions. It was not possible to transfer the high level of erythromycin resistance (1000 gamma/ml) on transduction to the strains of phage group I with a relatively low level of resistance to this antibiotic (20-50 gamma/ml.  相似文献   

13.
Thirty-five Staphylococcus aureus strains from auricular infections were isolated. The identification of strains was confirmed by Api ID 32 Staph strips, the antibiotic susceptibility test was performed using ATB Staph kit. PCR assay was used to detect the oxacillin resistance gene (mecA) and the erythromycin genes (ermA, ermB, ermC, msrA and mef). The susceptibility profile of all strains revealed a low resistance level to oxacillin and erythromycin. The PCR results show that 60 % of the strains are mecA positive. The frequency of erythromycin genes was: ermA (+) 22.8 %, ermB (+) 45.7, ermC (+) 17.1, msrA (+) 28.6. The mef gene was not detected in any strain. No correlations between genotypic and phenotypic methods for the determination of oxacillin and erythromycin resistance was found. However, multiplex PCR technique was shown to be a fast, practical and economic technique for the detection of methicillin-and erythromycin-resistant staphylococci.  相似文献   

14.
PCR扩增了蓝细菌集胞藻6803(Synechocystis sp.PCC6803)的agp基因(编码ADP-葡萄糖焦磷酸羧化酶),进一步以pUC118为载体将其克隆到大肠杆菌中,构建了pUCA质粒。通过DNA体外重组,以红霉素抗性基因部分取代agp基因片段,构建了既含agp基因上游及下游序列、又携带选择性标记-红霉素抗性的pUCAE质粒。该质粒转化野生型集胞藻6803细胞,获得了能在含红霉素的培养基上正常生长的agp基因缺失突变株。对该突变株基因组DNA进行PCR扩增,验邝了其基因结构的正确性。突变株细胞生长速度较野生型细胞快,胞内的叶绿素含量比野生型细胞高,表明该突变株具有较高的光合效率。在突变株中未检测到糖原的存在,进一步从生理水平上验证了突变株构建的正确性。  相似文献   

15.
The analysis of the genetic organization of the determinant ERLI by means of obtaining and studying the antibiotic sensitive mutants from the strain resistant to erythromycin and lincomycin provided experiment data in favour of the fact that inducable resistance to erythromycin and lincomycin determined by the plasmid might be defined by the same or closely linked genes.  相似文献   

16.
In analyzing the region of the Saccharopolyspora erythraea chromosome responsible for the biosynthesis of the macrolide antibiotic erythromycin, we identified a gene, designated eryK, located about 50 kb downstream of the erythromycin resistance gene, ermE. eryK encodes a 44-kDa protein which, on the basis of comparative analysis, belongs to the P450 monooxygenase family. An S. erythraea strain disrupted in eryK no longer produced erythromycin A but accumulated the B and D forms of the antibiotic, indicating that eryK is responsible for the C-12 hydroxylation of the macrolactone ring, one of the last steps in erythromycin biosynthesis.  相似文献   

17.
The erythromycin resistance determinant of plasmid pDB102, a derivative of plasmid pSM19035, was cloned into the single HindIII site of the 3.6-megadalton cryptic Streptococcus mutans plasmid pVA318 and introduced into Streptococcus sanguis strain Challis by transformation. Plasmid pDB201, which was isolated from one of the transformants, consisted of the vector plasmid and the 1.15-megadalton HindIII fragment D of pSM19035. HindIII fragment D contained within it one of the two unique "spacer" sequences of pSM19035. Electron micrographs of self-annealed molecules of the recombinant plasmid revealed classical stem-loop structures, and the resistance determinant of pSM19035 appeared as a transposon-like structure. No differences were observed in either the type or the level of erythromycin resistance by pSM19035 or pDB201. The availability of a cloned erythromycin resistance determinant should be useful for future comparative studies of macrolide, lincosamide, and streptogramin B resistance plasmids in streptococci.  相似文献   

18.
An anucleate small-protoplast fraction was prepared from a respiratory-competentSaccharomyces cerevisiae strain carrying mitochondrially inherited resistance to erythromycin, and used to transfer mitochondria selectively. Polyethylene glycol and Ca2+ were applied to induce fusion between these small protoplasts and nucleus-containing protoplasts of a respiratory-deficient ρ° mutant derived from an adenine-requiring strain of the same species. The majority of fusion products were haploid and erythromycin resistant, containing the nucleus of the recipient adenine-requiring strain and the mitochondrial genome from the respiratory-competent donor cells. Selective transfer of mitochondria and other cytoplasmic genetic elements also seems possible in a wide variety of fungal and other cells.  相似文献   

19.
In the course of an outbreak of enteritis and conjunctivitis, Staphylococcus aureus was isolated from newborn infants. Strains cultured at a later phase of the outbreak differed from those found at the beginning in being resistant to several antibiotics, showing resistance to typing phages and releasing phages of the same lysis spectrum (10(9) p.f.u./ml after heating at 56 degrees C for 2 min). Transduction experiments with a strain and its cell-free lysate showed that inducible erythromycin resistance was transferable to strains isolated at the beginning of the outbreak and to laboratory strains. Plasmid origin of resistance was confirmed by (i) high transduction frequency; (ii) transduction to RN981 rec- mutants; (iii) kinetics of transduction; (iv) elimination of resistance. Mixed culture experiments yielded transductants at high frequency with resistance to erythromycin, streptomycin and tetracycline.  相似文献   

20.
A strain of Staphylococcus epidermidis was transduced to erythromycin resistance, and all of the transductants exhibited the macrolide, lincosamide, streptogramin B resistance phenotype. Curing and antibiotic disk studies also indicated that these resistances were controlled by a single plasmid determinant and were constitutive. Agarose gel electrophoresis of plasmid deoxyribonucleic acid (DNA) from donor, cured, and transduced strains showed that a single plasmid was responsible. This plasmid, designated pNE131, was examined for sequence homology to two other plasmids, pE194 and p1258, from Staphylococcus aureus, which also code for erythromycin resistance. DNA from plasmids pNE131 and pE194 hybridized with one another, but no extensive homology to pI258 with either pNE131 or pE194 was found. Restriction endonuclease digests of pNE131 and pE194 showed no common fragments. However, sequence homology was localized to the nucleotides in pE194 that code for the 29,000-dalton protein responsible for erythromycin resistance. pNE131 was calculated to have 2,220 base pairs and is the smallest naturally occurring plasmid with a known function yet reported in S. epidermidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号