首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The current study demonstrates that aquaporin adipose (AQPap), an adipose-specific glycerol channel (Kishida, K., Kuriyama, H., Funahashi, T., Shimomura, I., Kihara, S., Ouchi, N., Nishida, M., Nishizawa, H., Matsuda, M., Takahashi, M., Hotta, K., Nakamura, T., Yamashita, S., Tochino, Y., and Matsuzawa, Y. (2000) J. Biol. Chem. 275, 20896-20902), is a target gene of peroxisome proliferator-activated receptor (PPAR) gamma. The AQPap mRNA amounts increased following the induction of PPARgamma in the differentiation of 3T3-L1 adipocytes. The AQPap mRNA in the adipose tissue increased when mice were treated with pioglitazone (PGZ), a synthetic PPARgamma ligand, and decreased in PPARgamma(+/-) heterozygous knockout mice. In 3T3-L1 adipocytes, PGZ augmented the AQPap mRNA expression and its promoter activity. Serial deletion of the promoter revealed the putative peroxisome proliferator-activated receptor response element (PPRE) at -93/-77. In 3T3-L1 preadipocytes, the expression of PPARgamma by transfection and PGZ activated the luciferase activity of the promoter containing the PPRE, whereas the PPRE-deleted mutant was not affected. The gel mobility shift assay showed the direct binding of PPARgamma-retinoid X receptor alpha complex to the PPRE. DeltaPPARgamma, which we generated as the dominant negative PPARgamma lacking the activation function-2 domain, suppressed the promoter activity in 3T3-L1 cells, dose-dependently. We conclude that AQPap is a novel adipose-specific target gene of PPARgamma through the binding of PPARgamma-retinoid X receptor complex to the PPRE region in its promoter.  相似文献   

4.
Rexinoids and thiazolidinediones (TZDs) are two classes of nuclear receptor ligands that induce insulin sensitization in diabetic rodents. TZDs are peroxisome proliferator-activated receptor gamma (PPARgamma) activators, whereas rexinoids are selective ligands for the retinoid X receptors (RXRs). Activation of both the insulin receptor substrates (IRSs)/Akt and the c-Cbl-associated protein (CAP)/c-Cbl pathways are important in regulating insulin-stimulated glucose transport. We have compared the effects of a rexinoid (LG268) and a TZD (rosiglitazone) on these two signal pathways in skeletal muscle of diabetic (db/db) mice. The results we have obtained show that treatment of db/db mice with either LG268 or rosiglitazone for 2 weeks results in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Treatment with LG268 increases insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation in skeletal muscle without affecting the activity of the CAP/c-Cbl pathway. In contrast, rosiglitazone increases the levels of CAP expression and insulin-stimulated c-Cbl phosphorylation without affecting the IRS-1/Akt pathway. The effects of LG268 on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Ser(307) phosphorylation. Taken together, these data suggest that rexinoids improve insulin sensitivity via changes in skeletal muscle metabolism that are distinct from those induced by TZDs. Rexinoids represent a novel class of insulin sensitizers with potential applications in the treatment of insulin resistance.  相似文献   

5.
6.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

7.
8.
9.
10.
11.
APS (adapter protein with Pleckstrin homology and Src homology 2 domains) is recruited by the autophosphorylated insulin receptor and is essential for Glut4 translocation. Although both APS and CAP (c-Cbl-associated protein) interact with c-Cbl during insulin signaling, the relative importance of each protein in recruiting c-Cbl has not been clear. We performed a side-by-side comparison by ectopic expression of APS or Src homology 2-Balpha (SH2-Balpha) and CAP in Chinese hamster ovary (CHO) cells. In cells co-expressing insulin receptor and CAP, without APS, no association of the insulin receptor and CAP could be detected and no insulin-stimulated phosphorylation of Cbl was observed. Insulin-stimulated Cbl phosphorylation was reconstituted when APS was co-expressed with insulin receptor, with or without CAP. APS or SH2-Balpha and CAP interacted in the basal state, and in the case of APS this interaction was mediated by the C terminus of APS. Insulin stimulation resulted in the dissociation of APS and CAP. Similarly, insulin stimulation also resulted in the dissociation of SH2-Balpha and CAP in CHO cells. CAP was localized to the membrane in the presence of APS. Insulin stimulation resulted in the re-localization of CAP to the cytosol only when APS was co-expressed. In 3T3-L1 adipocytes, small interfering RNA-mediated knockdown of the mouse APS gene abolished the insulin-stimulated phosphorylation of c-Cbl. Taken together, these results indicate that APS plays a central role in recruiting both CAP and c-Cbl to the insulin receptor after insulin stimulation and is necessary and sufficient for the insulin-stimulated phosphorylation of c-Cbl, whereas SH2-Balpha may provide an alternative pathway for the recruitment of CAP.  相似文献   

12.
Fibroblast growth factor (FGF)-21 is a novel regulator of insulin-independent glucose transport in 3T3-L1 adipocytes and has glucose and triglyceride lowering effects in rodent models of diabetes. The precise mechanisms whereby FGF-21 regulates metabolism remain to be determined. Here we describe the early signaling events triggered by FGF-21 treatment of 3T3-L1 adipocytes and reveal a functional interplay between FGF-21 and peroxisome proliferator-activated receptor gamma (PPARgamma) pathways that leads to a marked stimulation of glucose transport. While the early actions of FGF-21 on 3T3-L1 adipocytes involve rapid accumulation of intracellular calcium and phosphorylation of Akt, GSK-3, p70(S6K), SHP-2, MEK1/2, and Stat3, continuous treatment for 72 h induces an increase in PPARgamma protein expression. Moreover, chronic activation of the PPARgamma pathway in 3T3-L1 adipocytes with the PPARgamma agonist and anti-diabetic agent, rosiglitazone (BRL 49653), enhances FGF-21 action to induce tyrosine phosphorylation of FGF receptor-2. Strikingly, treatment of cells with FGF-21 and rosiglitazone in combination leads to a pronounced increase in expression of the GLUT1 glucose transporter and a marked synergy in stimulation of glucose transport. Together these results reveal a novel synergy between two regulators of glucose homeostasis, FGF-21 and PPARgamma, and further define FGF-21 mechanism of action.  相似文献   

13.
14.
15.
16.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.  相似文献   

17.
18.
19.
Activators of peroxisome proliferator-activated receptor (PPAR)-gamma are anti-inflammatory and have been proposed as therapeutic agents for the treatment of Th1-type inflammatory diseases. We report that nanomolar concentrations of rosiglitazone enhance the production of IL-10 from activated human mature monocyte-derived dendritic cells. Also, rosiglitazone specifically induces the production of IL-10 from TCR-activated human CD4+ T cells and that this effect is PPAR-gamma-dependent. We also demonstrate for the first time the presence of a functional PPAR response element (PPRE) in the human IL-10 promoter region. Finally we show that rosiglitazone can induce IL-10 in combination with 1,25 alpha-dihydroxyvitamin D3 to a greater extent than each treatment alone. In summary our findings demonstrate that IL-10 is upregulated by nanomolar TZDs in immune cells, and this may, in part, be responsible for the potential anti-inflammatory effects of PPAR-gamma in humans.  相似文献   

20.
Mechanisms regulating adipocyte expression of resistin   总被引:29,自引:0,他引:29  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号