首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

2.
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (P N) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, P N, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period.  相似文献   

3.
Net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, chlorophyll (Chl) content and biomass production were estimated at monthly intervals inChukrasia tabularis, Dolichandrone atrovirens, Eugenia jambolana, Gmelina arborea, Lannea coromandelica, Terminalia arjuna andTerminalia bellerica from September 1990 to August 1991. The leaves of all the seven tree species showed significantly higher PN during summer than in winter and these rates differed from one species to the other. A positive correlation was found between PN of different tree species and their Chl content or biomass production. There was no significant correlation between ribulose-1,5-bisphosphate carboxylase activity and PN when these were expressed on leaf area basis.  相似文献   

4.
Net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, chlorophyll (Chl) content and biomass production were estimated at monthly intervals inChukrasia tabularis, Dolichandrone atrovirens, Eugenia jambolana, Gmelina arborea, Lannea coromandelica, Terminalia arjuna andTerminalia bellerica from September 1990 to August 1991. The leaves of all the seven tree species showed significantly higher PN during summer than in winter and these rates differed from one species to the other. A positive correlation was found between PN of different tree species and their Chl content or biomass production. There was no significant correlation between ribulose-1,5-bisphosphate carboxylase activity and PN when these were expressed on leaf area basis.  相似文献   

5.
The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (P N), mesophyll conductance (g m), and stomatal conductance (g s) decreased. P N was more dominantly restricted by g m than g s. The values of P N, g m, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high P N and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input.  相似文献   

6.
Ashraf  M.  Arfan  M.  Shahbaz  M.  Ahmad  Ashfaq  Jamil  A. 《Photosynthetica》2002,40(4):615-620
Thirty-days-old plants of two cultivars of okra (Hibiscus esculentus L.), Sabzpari and Chinese-red, were subjected for 30 d to two water regimes (100 and 60 % field capacity). Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Both the leaf pressure potential and osmotic adjustment were much lower in Chinese-red than those in Sabzpari. Chlorophyll (Chl) b content increased, whereas Chl a content remained unchanged and thus Chl a/b ratios were reduced in both lines. Drought stress also caused a significant reduction in net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and water use efficiency (WUE) especially in cv. Sabzpari. The lines did not differ in intrinsic WUE (P Ngs) or intercellular/ambient CO2 ratio. Overall, the growth of two okra cultivars was positively correlated with P N, but not with g s or P N/E, and negatively correlated with osmotic adjustment.  相似文献   

7.
Proietti  P.  Famiani  F. 《Photosynthetica》2002,40(2):171-176
Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (P N) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest P N values were observed in October, while the lowest values were recorded in August and December; during the day the highest P N values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (C I) tended to increase when P N decreased. The increase in C I was accompanied by a stomatal conductance to water vapor (g S) decrease. In general, P N and dark respiration rate (R D) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations.  相似文献   

8.
Jiang  Hua  Xu  Da-Quan 《Photosynthetica》2001,39(3):453-459
To explore the cause of difference in photosynthetic performance between different cultivars of crops, leaf net photosynt rate (P N) and photosystem 2 (PS2) photochemical efficiency (Fv/Fm), apparent quantum yield of carbon assimilation (c), electron transport rate, photophosphorylation activity, etc. were measured in two soybean cultivars, Heinong 42 and Heinong 37. At pod setting and filling, significant differences in P N between them were observed. The former with a higher P N (from 7 to 38 %) had a significantly higher leaf thickness, leaf dry mass/area (LMA), chlorophyll content, soluble protein content, apparent quantum yield of electron transport through PS2 (e), carboxylation efficiency (CE), and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity. The significantly higher P N of Heinong 42 is mainly due to its higher content and activity of RuBPC.  相似文献   

9.
C. Xu  Y. Yin  R. Cai  P. Wang  Y. Ni  J. Guo  E. Chen  T. Cai  Z. Cui  T. Liu  D. Yang  Z. Wang 《Photosynthetica》2013,51(1):139-150
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (P N), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high P N duration, and accumulation of photosynthates in wheat plants.  相似文献   

10.
Rates of light-saturated net photosynthesis (PNmax) and darkrespiration (Rd) on a leaf area basis, leaf dry mass per area(LMA), leaf nitrogen content on a leaf area basis (LNa) andinstantaneous nitrogen use efficiency (NUE=PNmax/LNa) were followedduring leaf development in six evergreen broad-leaved tree speciestypical of warm-temperate forests in Japan. These species wereCastanopsissieboldii, Quercus myrsinaefolia, Quercus glauca, Machilus thunbergii,Cinnamomum japonicumandNeolitsea sericea.When expansion of leafarea was complete, PNmax was about one third of its peak valueand increased for another 15 to 44 d. Rd at full leaf expansionwas about 1.5 to 3.5-times greater than steady-state rates.These facts suggest that leaf development was still underwayat the time of full leaf area expansion. Low PNmax at full leafexpansion was caused both by low leaf nitrogen content and lowNUE. PNmax increased with the increase in LMA during leaf developmentin all six species; data from the literature for other specieswith different life forms also indicated a similar tendency.The steady-state LMA varied markedly among species. Becauseleaves with larger steady-state LMAs need more resources fortheir construction, they will also need longer periods for maturation.We hypothesized that the period required for the attainmentof peak PNmax, the ‘leaf maturation period’, dependson the steady-state LMA. Plotting data from the present studytogether with those from literature for other plants acrossseveral life forms showed a strong positive relationship betweenleaf maturation period and steady-state LMA, supporting thehypothesis.Copyright 1998 Annals of Botany Company. Castanopsis sieboldii, Cinnamomum japonicum,delayed period, expansion period, full leaf expansion,Machilus thunbergii,maturation period,Neolitsea sericea, Quercus glauca, Quercus myrsinaefolia,steady-state LMA.  相似文献   

11.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

12.
Question: Is there any generality in terms of leaf trait correlations and the multiple role of leaf traits (response to and/or effect on) during secondary succession? Location: A secondary successional sere was sampled at four different ages since abandonment from several years to nearly 150 years on the Loess Plateau of northwestern China. Method: Specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen (Nmass, Narea), leaf phosphorus (Pmass, Parea) and leaf dry matter content (LDMC) were measured for all species recorded in the successional sere. Above‐ground net primary productivity (ANPP) and specific rate of litter mass loss (SRLML) were measured as surrogates for ecosystem properties. Soil total carbon (C) and nitrogen (N) were measured in each stage. Leaf traits were related to ecosystem properties and soil nutrient gradients, respectively. Results: LMA is correlated with Narea and Parea' and negatively with Nmass. Correlation between Narea and Parea was higher than between Nmass and Pmass. At the community level, field age, community hierarchy and their interaction explain 64.4 ‐ 93.5% of the variation in leaf traits. At the species level, field age explains 22.4 ‐ 45.5% of the variation in leaf traits (excl. Parea) while plant functional group has a significant effect only for Nmass. LDMC is correlated with ANPP and negatively with SRLML; Pmass is correlated with SRLML. Conclusions: Mean values of LMA, Nmass and Narea are close to the worldwide means, suggesting that large‐scale climate has a profound effect on leaf mass and leaf nitrogen allocation, while environmental gradients represented by succession have little influence on leaf‐trait values. Correlations between leaf traits, such as LMA‐Narea, LMA‐Parea and LMA‐Nmass shown in previous studies, are confirmed here. Although none of the leaf traits is proved to be both a response trait and an effect trait independent of time scale and community hierarchy, mass‐based leaf N is likely a sensitive response trait to soil C and N gradients. In addition, LDMC can be a marker for ANPP and SRLML, while mass‐based leaf P can be a marker for SRLML.  相似文献   

13.
Net photosynthetic rate (P N), stomatal conductance (g S), transpiration rate (E), intercellular CO2 concentration (C i), leaf water potential (w), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, P N, g S, and E declined whereas C i increased. P N, g S, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of P N, E, and g S, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry.  相似文献   

14.
To understand the ecophysiological adaptation mechanisms of Calligonum roborovskii to altitude variation, this study analyzed chlorophyll a (Chl a), chlorophyll b (Chl b), Chl (a + b), carotenoid (Car), malondialdehyde (MDA), ascorbate (AsA), proline (Pro), membrane permeability (MP), reactive oxygen species (ROS), specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen content based on mass (Nmass), and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in leaves of plants inhabiting different altitudes (A1: 2100 m, A2: 2350 m, A3: 2600 m) on the northern slope of the Kunlun Mountains. The results showed that Chl a, Chl b, Chl (a + b), SLA, Nmass, and the activity of CAT increased with increasing altitude. LMA, MP, MDA, Car, Pro, AsA, O2, H2O2 and the activities of SOD, POD, and APX decreased with increasing altitude. The test results also showed that, changes in venvironmental factors along an altitudinal gradient are not obvious. Soil water content is the main ecological factor. With increasing altitude, soil water content increased significantly. More non-enzymatic and enzymatic antioxidants played an important role in eliminating intracellular ROS. They kept the cell membrane in a stable state and ensured the normal growth of C. roborovskii.  相似文献   

15.
长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化   总被引:3,自引:0,他引:3  
胡启鹏  郭志华  孙玲玲  王彬 《生态学报》2013,33(12):3594-3601
通过研究沿不同海拔岳桦幼树叶功能型性状,揭示其对环境的响应机制.结果表明:①随海拔升高,岳桦叶面积(LA)逐渐降低,比叶重(LMA)增加,但LMA较高的可塑性指数表明其适应更依赖叶片的薄厚变化;②岳桦叶绿素含量随海拔升高而显著下降,但类胡萝卜素Car和Car/Chl显著升高,Chlb和Car/Chl表现出较高的可塑性指数,更倾向于吸收蓝紫光和保护光合器官;③岳桦叶氮含量(Narea和Nmass)在海拔1800-1900m间最低,在低海拔和高海拔均表现较高,但Chl/Nmass却随海拔升高而显著增加,Nmasss比Narea具有较高的可塑性指数,对光能的吸收更依赖Nmass对Chl的贡献,高海拔主要将更多的氮投资于光合器官的保护(1900m以上),低海拔则更倾向于光合生产(1800m以下);④随海拔升高,MDA增加,但随之抗氧化物质DS、Pro和APX活性增加,负责对活性氧的抵御和清除,但APX活性最大的可塑性指数表明活性氧的清除更依赖于酶促系统,但在海拔1900m以上,APX活性差异不显著,生理抗性逐渐下降,限制岳桦继续向高海拔生长;⑤抗氧化物质可塑性指数最高,叶绿素和叶形态次之,叶氮最低,表明随海拔升高,岳桦林以保护自身的生存为最主要的适应策略机制,然后以增加吸收光能的Chlb及LMA指标为主要生长策略.  相似文献   

16.
Differences in leaf traits among the dune species developing along the Latium coast were analysed. Cakile maritima Scop. subsp. maritima, Elymus farctus (Viv.) Runemark ex Melderis subsp. farctus, Ammophila arenaria (L.) Link subsp. australis (Mabille) Lainz, Ononis variegata L., Pancratium maritimum L., Eryngium maritimum L., and Anthemis maritima L. were considered. The considered species showed a similar net photosynthetic rate (P N) and chlorophyll content (Chl) during the year, with a peak from the end of April to the middle of May [13.0±3.6 μmol (CO2) m−2 s−1 and 0.63±0.21 mg g−1, respectively, mean values of the considered species], favoured by air temperature in the range 13.3–17.5°C, and 6% of soil water availability. In June–July, the increase of air temperature (Tmax = 28.4°C), associated with a lower water availability (42 mm, total rainfall of the period) and a 1% of soil water availability determined a significant decrease of P N (59%, mean of the considered species) and Chl (38%), and an increase of the carotenoid (Car)/Chl ratio (59%). The significant correlation between P N and stomatal conductance (g s) (p<0.05) explained 67% of P N variations. Moreover, the correlation between P N and leaf temperature (T l) underlined that the favourable T l enabling 90–100% of the highest P N for the considered species was within the range 23.4 to 26.6°C. P N decreased below half of its maximum value when T l was over 35.8 and 37.4°C for E. farctus subsp. farctus and A. arenaria subsp. australis, respectively and over 32.2°C for the other considered species (mean value). Leaf mass area (LMA) varied from 6.8 ± 0.7 mg cm−2 (O. variegata) to 30.6 ± 1.6 mg cm−2 (A. arenaria). PCA (principal component analysis) carried out using the considered morphological and physiological leaf traits underlined that the co-occurring species were characterised by different adaptive strategies: E. farctus and A. arenaria photosynthesized for a long period also when air temperature was over 35.8 and 37.4°C, respectively, because of their lower transpiration rates [E, 1.4 ± 0.1 mmol (H2O) m−2 s−1], which seemed to be controlled by the highest LMA. On the contrary, A. maritima and C. maritima subsp. maritima had a higher P N (on an average 52% higher than the others) in the favourable period, allowed by the highest succulence index (SI, 85.7 ± 9 mg cm−2) and the lower LMA. The results allowed us to hypothesize that A. arenaria and E. farctus might be at a competitive advantage relative to the other considered species with respect to the increase of air temperature, by their ability to photosynthesize at sufficient rates also during summer.  相似文献   

17.
The ecophysiological traits of acacia and eucalypt are important in assessing their suitability for afforestation. We measured the gas-exchange rate, the leaf dry mass per area (LMA) and the leaf nitrogen content of two acacia and four eucalypt species. Relative to the eucalypts, the acacias had lower leaf net photosynthetic rate (P N), lower photosynthetic nitrogen-use efficiency (PNUE), higher water-use efficiency (WUE), higher LMA and higher leaf nitrogen per unit area (N area). No clear differences were observed within or between genera in the maximum rate of carboxylation (V cmax) or the maximum rate of electron transport (J max), although these parameters tended to be higher in eucalypts. PNUE and LMA were negatively correlated. We conclude that acacias with higher LMA do not allocate nitrogen efficiently to photosynthetic system, explaining why their P N and PNUE were lower than in eucalypts.  相似文献   

18.
Feng  Y.-L.  Cao  K.-F.  Zhang  J.-L. 《Photosynthetica》2004,42(3):431-437
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (P max), dark respiration rate (R D), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based P max, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based P max, R D, and CE. The area-based P max and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based P max, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based P max. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I.  相似文献   

19.
Photosynthetic parameters were compared in three types of transgenic tobacco plants: ipt-transgenic plants with slightly elevated endogenous cytokinin (CK) content, Pssu-ipt-transgenic plants with markedly increased CK content, and zmp-transgenic plants with slightly elevated CK content accompanied by elevated auxin content. Slightly increased CK content promoted net photosynthetic rate (PN) in both ipt- and zmp-transgenic plants, and chlorophyll (Chl) and carotenoid contents in zmp-transgenic plants. Morphology, growth characteristics, stomatal conductance, and parameters of Chl a fluorescence kinetics were similar in control and transgenic plants with slightly higher CK content. No significant effect of increased level of endogenous auxin (indole-3-acetic acid) on development of zmp-transgenic plants and measured parameters was found. Pssu-ipt-transgenic plants with highly increased CK content revealed suppressed root development, wilting of plants, and depression of PN and stomatal conductance; however, Chl content was slightly increased and parameters of Chl a fluorescence kinetics did not indicate damage to photosynthetic apparatus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Thirty-nine Brassica coenospecies grown in pot cultures during 1993 and 1994 were screened for variability in photosynthetic rate (P N ) and leaf characters. There were significant differences among the species in P N per unit leaf area, chlorophyll (Chl) content, specific leaf mass (SLM), stomatal resistance (r s ) and individual leaf size. The interactions species x year and species x date of measurement were small compared to the species effect. There was a significant negative correlation between P N and r s and a significant positive one between P N and both Chl content and SLM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号