首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
Tumour cells produce systemic or local factors which can stimulate osteoclast development and activity leading to increased bone resorption. The clinical consequences are bone pain, fractures and hypercalcaemia. Inhibitors of osteoclast-mediated bone resorption, such as the bisphosphonates, are now the treatment of choice for tumour-induced hypercalcaemia. Recent evidence indicates that these compounds, especially the newer ones, reduce skeletal morbidity in patients with metastatic bone disease and improve their quality of life. Better understanding of the mechanisms underlying tumour-induced bone resorption and development of more potent and less toxic bisphosphonates will lead to improved management of patients with malignant diseases involving the skeleton.  相似文献   

2.
The skeleton is the most common site of breast cancer metastasis, which can occur in up to 85% of patients during their lifetime. The morbidity associated with bone metastases in patients with breast cancer includes pathological fractures, bone pain, hypercalcaemia, and spinal cord compression. When breast cancer metastasizes to bone, the balance of bone resorption (mediated by osteoclasts) and bone formation (mediated by osteoblasts) favors bone resorption, which leads to net bone destruction (i.e., osteolysis). Anti-resorptive agents such as bisphosphonates are commonly used to treat bone resorption in osteoporosis or osteolytic cancer patients. However, bisphosphonates by themselves are unable to rebuild lost bone tissue, and can cause severe side effects. In this study, we developed a bovine bone explant culture system and have observed that murine osteoblasts can modulate the activity of osteotropic human breast cancer cells on this substrate. Using markers of bone metabolism, we observe diminished bone turnover in organ culture following the addition of exogenous osteoblasts. The data presented in this study supports further investigation into the use of cytotherapies to limit breast cancer mediated osteolysis.  相似文献   

3.
Bone metastases afflict over 70% of patients with advanced breast cancer, resulting in impaired quality of life and significant clinical problems. Until appearance of the bisphosphonates there was no specific therapeutic treatment available to manage the symptoms of osteolytic bone metastases. Bisphosphonates are stable chemical analogues of pyrophosphate, and inhibit osteoclast-mediated bone resorption, the treatment is effective in reducing skeletal morbidity in breast cancer with fewer skeletal related events, reduced pain and analgesic consumption, and improved quality of life. As a result, bisphosphonates should now be part of the routine management of metastatic bone disease and multiple myeloma. Promising data have resulted in considerable interest in the possible adjuvant use of bisphosphonates. Pamidronate is an easy to use potent inhibitor of osteolysis, given in conjunction with standard anticancer therapies effectively relieves bone pain and improves performance status. Monthly pamidronate infusions for one or two years in addition to standard anticancer therapy reduce by more than one third the yearly frequency of skeletal-related events. The authors report their practice in which 119 breast cancer patients metastatic to bone received 90-120 mg pamidronate infusion/cycle in addition to standard breast cancer therapy every 3-4 weeks.  相似文献   

4.
Although, both bisphosphonates and denosumab are effective in reducing the risk of skeletal-related events in patients with metastatic bone disease, many concerns were being raised about the possible association between their use and atypical femoral fractures. A case of an atypical femoral fracture in a metastatic bone disease patient, six months after discontinuation of long-term zoledronic acid therapy and sequential treatment with denosumab is reported. After extensive laboratory and imaging examination, the fracture was classified as atypical and it was finally treated with discontinuation of denosumab, long cephalomedullary interlocking nailing and vitamin D administration. Sequential treatment with bisphosphonates and denosumab in patients with metastatic bone disease, may lead to an overlapping treatment effect, increasing bone suppression and the risk of atypical femoral fracture. In addition, discontinuation of denosumab may activate bone remodeling units in an area with microdamage accumulation in cortical bone caused by the previous bone suppression from the antiresorptive treatment. The activation of bone remodeling units may accelerate the occurrence of the atypical femoral fractures.  相似文献   

5.
Liver and bone     
Osteoporosis is a frequent complication in patients with chronic liver disease, especially in end-stages and in cases with chronic cholestasis, hemochromatosis and alcohol abuse. The problem is more critical in transplant patients when bone loss is accelerated during the period immediately after transplantation, leading to a greater incidence of fractures. Advanced age, low body mass index and severity of the liver disease are the main risk factors for bone disease in patients with cholestasis. Mechanisms underlying osteoporosis in chronic liver disease are complex and poorly understood, but osteoporosis mainly results from low bone formation, related to the effects of retained substances of cholestasis, such as bilirubin and bile acids, or to the effects of alcohol on osteoblastic cells. Increased bone resorption has also been described in cholestatic women with advanced disease. Although there is no specific treatment, bisphosphonates associated with supplements of calcium and vitamin D are effective for increasing bone mass in patients with chronic cholestasis and after liver transplantation. The outcome in reducing the incidence of fractures has not been adequately demonstrated essentially because of the low number of patients included in the therapeutic trials. Randomized studies assessing bisphosphonates in larger series of patients, the development of new drugs for osteoporosis and the improvement in the management of liver transplant recipients may change the future.  相似文献   

6.
Denosumab is a fully human monoclonal antibody against RANK ligand (RANKL), an essential cytokine for the formation, function, and survival of osteoclasts. The role of excessive RANKL as a contributor to conditions characterized by bone loss or bone destruction has been well studied. With its novel mechanism of action, denosumab offers a significant advance in the treatment of postmenopausal osteoporosis; bone loss associated with hormone ablation therapy in women with breast cancer and men with prostate cancer; and the prevention of skeletal-related events in patients with bone metastases from solid tumors by offering clinical benefit to these patients in need.  相似文献   

7.
The treatment of Paget's disease of bone (PDB) aims at the suppression of abnormal bone turnover; bisphosphonates are currently the treatment of choice. Indications for antiresorptive treatment in symptomatic patients with PDB include bone or joint pain, neurological complications, surgery planned at an active pagetic site and hypercalcaemia from immobilisation. The goals of antiresorptive treatment are clinical improvement and biochemical remission, as assessed by the normalisation of bone turnover markers. Clinical deterioration, especially bone pain, should be considered before deciding to treat patients with late sclerotic (burned-out) PDB. Bone scintigraphy may be of importance in these patients, because it depicts increased osteoblastic activity, when bone markers may not. We present a case of late sclerotic PDB with clinical deterioration but normal bone turnover markers, who experienced significant clinical improvement after treatment with zoledronic acid.  相似文献   

8.
Cancer chemotherapy has been recognized as one severe risk factor that influences bone growth and bone mass accumulation during childhood and adolescence. This article reviews on the importance of this clinical issue, current understanding of the underlying mechanisms for the skeletal defects and potential preventative strategies. Both clinical and basic studies that appeared from 1990 to 2010 were reviewed for bone defects (growth arrest, bone loss, osteonecrosis, and/or fractures) caused by paediatric cancer chemotherapy. As chemotherapy has become more intensive and achieved greater success in treating paediatric malignancies, skeletal complications such as bone growth arrest, low bone mass, osteonecrosis, and fractures during and/or after chemotherapy have become a problem for some cancer patients and survivors particularly those that have received high dose glucocorticoids and methotrexate. While chemotherapy-induced skeletal defects are likely multi-factorial, recent studies suggest that different chemotherapeutic agents can directly impair the activity of the growth plate and metaphysis (the two major components of the bone growth unit) through different mechanisms, and can alter bone modeling/remodeling processes via their actions on bone formation cells (osteoblasts), bone resorption cells (osteoclasts) and bone "maintenance" cells (osteocytes). Intensive use of multi-agent chemotherapy can cause growth arrest, low bone mass, fractures, and/or osteonecrosis in some paediatric patients. While there are currently no specific strategies for protecting bone growth during childhood cancer chemotherapy, regular BMD monitoring and exercise are have been recommended, and possible adjuvant treatments could include calcium/vitamin D, antioxidants, bisphosphonates, resveratrol, and/or folinic acid.  相似文献   

9.
Internal radiotherapy is effective in the treatment of metastatic bone pain and can improve quality of life. A number of controlled studies using various agents have shown a mean response rate in pain relief of 70–80% of treated patients. Some investigators prefer radionuclides which emit low beta particles for the treatment of bone pain, because the assumption of lower bone marrow toxicity of this agents. However, neither dosimetric data for radiation absorbed dose to the bone marrow nor clinical blood count depression have shown any significant differences between these agents. Other researchers suggest enhanced antitumoral effects using high-energy beta emitters and propose aggressive first-line treatment in the early disease stage instead of using these radiopharmaceuticals only in end-stage patients suffering intractable bone pain. Another approach consists of including other treatment modalities such as autologous stem cell rescue or in combination with chemo or bisphosphonate therapy to a radionuclide treatment scheme. Future research should focus more on the curative effects of combination with radiosensitizer, for example, chemotherapy, or repeated treatments with bone seeking agents.  相似文献   

10.
Prostate cancer (PCa) epithelial cells require a number of factors to facilitate their establishment and growth at a distant site of metastasis. Their ability to adapt to their microenvironment, proliferate and recruit an underlying stroma is integral to the survival and growth of the metastasis. PCa predominantly metastasizes to the bone, and bone metastases are the main cause of morbidity. The bone marrow provides a permissive environment for the formation of a metastasis. In some cases, the cells may remain dormant for some time, eventually proliferating in response to an unknown "trigger." The marrow is rich in progenitor cells that differentiate into numerous cell types, producing new blood vessels, supporting fibroblasts, and an underlying extracellular matrix (ECM) that form the reactive stroma. By secreting a number of cytokines, growth factors and proteases they recruit auxiliary cells required to produce a functional stroma. These components are involved in a reciprocal interaction between the stroma and the PCa cells, allowing for the growth and survival of the tumor. Left unchecked, once a PCa tumor has established itself in the bone marrow it will eventually replace the marrow, interrupting bone homeostasis and typically promoting an osteoblastic response in the bone including osteoclastic events. The abundant deposition of new woven bone results in nerve compression, bone pain and an increase in fractures in patients with PCa bone metastases. This review will examine the tumor microenvironment, its role in facilitating tumor dissemination, growth and the resultant pathologies associated with PCa bone metastasis.  相似文献   

11.
Breast carcinoma is the most common cancer of women. Bones are often involved with breast carcinoma metastases with the resulting morbidity and reduced quality of life. Breast cancer cells arriving at bone tissues mount supportive microenvironment by recruiting and modulating the activity of several host tissue cell types including the specialized bone cells osteoblasts and osteoclasts. Pathologically activated osteoclasts produce osteolytic lesions associated with bone pain, pathological fractures, cord compression and other complications of metastatic breast carcinoma at bone. Over the last decade there has been enormous growth of knowledge in the field of osteoclasts biology both in the physiological state and in the tumor microenvironment. This knowledge allowed the development and implementation of several targeted therapeutics that expanded the armamentarium of the oncologists dealing with the metastases-associated osteolytic disease. While the interactions of cancer cells with resident bone cells at the established metastatic gross lesions are well-studied, the preclinical events that underlie the progression of disseminated tumor cells into micrometastases and then into clinically-overt macrometastases are just starting to be uncovered. In this review, we discuss the established information and the most recent discoveries in the pathogenesis of osteolytic metastases of breast cancer, as well as the corresponding investigational drugs that have been introduced into clinical development.  相似文献   

12.
New trends in the treatment of bone metastasis   总被引:1,自引:0,他引:1  
Bone metastasis is often the penultimate harbinger of death for many cancer patients. Bone metastases are often associated with fractures and severe pain resulting in decreased quality of life. Accordingly, effective therapies to inhibit the development or progression of bone metastases will have important clinical benefits. To achieve this goal understanding the mechanisms through which bone metastases develop and progress may provide targets to inhibit the metastases. In the past few years, there have been advances in both understanding the mechanisms through which bone metastases develop and how they impact bone remodeling. Additionally, gains in promising clinical strategies to target bone metastases have been developed. In this prospectus, we will discuss some of these advances.  相似文献   

13.
Geminal bisphosphonates can be used for a variety of purposes in human disease including reduction of bone resorption in osteoporosis, treatment of fractures associated with malignancies of the prostate, breast, and lung, and direct anticancer activity against bone marrow derived malignancies. Previous research led to identification of some novel isoprenoid bisphosphonates that inhibit geranylgeranyl pyrophosphate (GGPP) synthesis and diminish protein geranylgeranylation. Described here is the synthesis of fluorescent anthranilate analogues of the most active isoprenoid bisphosphonates and examine their ability to impact post-translational processing of the small GTPases Ras, Rap1a, and Rab6. Similar to their non-fluorescent counterparts, some of these fluorescent isoprenoid bisphosphonates diminish protein geranylgeranylation. Their biological activity and fluorescent character suggest that they may be useful in studies of bisphosphonate localization both in cultured cells and in whole organisms.  相似文献   

14.
Objective To review the evidence for the use of bisphosphonates to reduce skeletal morbidity in cancer patients with bone metastases.Data sources Electronic databases, scanning reference lists, and consultation with experts and pharmaceutical companies. Foreign language papers were included.Study selection Included trials were randomised controlled trials of patients with malignant disease and bone metastases who were treated with oral or intravenous bisphosphonate compared with another bisphosphonate, placebo, or standard care. All trials measured at least one outcome of skeletal morbidity.Results 95 articles were identified; 30 studies fulfilled inclusion criteria. In studies that lasted ≥ 6 months, compared with placebo bisphosphonates significantly reduced the odds ratio for fractures (vertebral 0.69, 95% confidence interval 0.57 to 0.84, P < 0.0001; non-vertebral 0.65, 0.54 to 0.79, P < 0.0001; combined 0.65, 0.55 to 0.78, P < 0.0001), radiotherapy (0.67, 0.57 to 0.79, P < 0.0001), and hypercalcaemia (0.54, 0.36 to 0.81, P = 0.003) but not for orthopaedic surgery (0.70, 0.46 to 1.05, P = 0.086) or spinal cord compression (0.71, 0.47 to 1.08, P = 0.113). The reduction in orthopaedic surgery was significant in studies that lasted over a year (0.59, 0.39 to 0.88, P = 0.009). Use of bisphosphonates significantly increased time to first skeletal related event but did not increase survival. Subanalyses showed that most evidence supports use of intravenous aminobisphosphonates.Conclusions In people with metastatic bone disease bisphosphonates significantly decrease skeletal morbidity, except for spinal cord compression and increased time to first skeletal related event. Treatment should start when bone metastases are diagnosed and continue until it is no longer clinically relevant.  相似文献   

15.
Multiple myeloma (MM) is the most common cancer to involve bone with up to 90% of patients developing bone lesions. The bone lesions are purely osteolytic in nature and do not heal in the vast majority of patients. Up to 60% of patients develop pathologic fractures over the course of their disease. Bone disease is a hallmark of MM, and myeloma bone disease differs from bone metastasis caused by other tumors. Although myeloma and other osteolytic metastases induce increased osteoclastic bone destruction, in contrast to other tumors, once myeloma tumor burden exceeds 50% in a local area, osteoblast activity is either severely depressed or absent. The basis for this severe imbalance between increased osteoclastic bone resorption and decreased bone formation has been the topic of intensive investigation over the last several years. These studies have helped to identify novel targets for treating myeloma bone disease and will be discussed in this chapter. J. Cell. Biochem. 109: 283–291, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Many older people, especially women, and their doctors still see osteoporosis as part of the natural course of ageing instead of as a preventable or treatable disorder. Height loss, hyperkyphosis, back pain, and fractures are accepted as consequences of ageing. The notion that it is too late to start treatment in a late stage of the disease forms another barrier to treatment. Although most studies of fracture reduction with medical treatment were not designed for the "geriatric" population, the average age of participants in most clinical trials was about 70 years. In all major studies patients also received calcium and vitamin D supplements. Nowadays, clinicians can choose from several effective treatments for the prevention of osteoporotic fractures in high-risk postmenopausal women. Data on the anti-fracture potential of calcium/vitamin D, raloxifene, bisphosphonates, strontium ralenate, and parathyroid hormone are now available. Bisphosphonates and strontium ralenate are good choices for first- or second-line treatment, while for the time being parathyroid hormone should only be used for the second-line treatment of osteoporosis in the elderly.  相似文献   

17.
18.
Bisphosphonates are effective against increased bone resorption because they inhibit osteoclast activity. The use of these drugs is well established for the treatment of metastatic breast and other cancers; they reduce skeletal complications, hypercalcemia, bone pain, and metastatic progression and they can improve the overall survival and quality of life. Preclinical observations and early clinical data indicate that early bisphosphonate treatment reduces the incidence and the extent of newly developed metastases in breast cancer. There is considerable interest in determining whether bisphosphonate treatment is to prevent the incidence of bone metastases and associated complications. To date three randomized, controlled clinical trials have examined the effect of long-term use of clodronate (1600 mg/d po.) on the incidence of bone metastases, other metastases, the survival of patients, and the side effects of the study drug as well. All the trials have observed significant reduction of the occurrence of bone metastases, although this reduction was significant only during the medication period. One of the trials mentioned have shown an unexpected reduction in non-osseous metastases, and two of them have revealed significant improvements in the death rates. These promising results need further evaluation by large clinical trials with longer treatment periods to establish the clinical role of adjuvant bisphosphonate treatment of primary breast cancer.  相似文献   

19.
Androgen deprivation therapy (ADT) and bone metastases are the most important risk factors for developing skeletal complications (eg, bone loss, pathologic fractures) in prostate cancer (PC) patients with locally advanced and metastatic disease. Bisphosphonates, which inhibit excessive osteoclast activity caused by ADT and bone metastases, have proven to be safe and effective in preventing skeletal complications and presently are the standard of care in patients with metastatic disease. Bisphosphonates should be considered for use in all PC patients with locally advanced disease initiating ADT for an intended duration of at least 1 year, especially those with a low baseline bone mineral density.  相似文献   

20.
Bone metastases, present in 70% of patients with metastatic breast cancer, lead to skeletal disease, fractures and intense pain, which are all believed to be mediated by tumor cells. Engraftment of tumor cells is supposed to be preceded by changes in the target tissue to create a permissive microenvironment, the pre-metastatic niche, for the establishment of the metastatic foci. In bone metastatic niche, metastatic cells stimulate bone consumption resulting in the release of growth factors that feed the tumor, establishing a vicious cycle between the bone remodeling system and the tumor itself. Yet, how the pre-metastatic niches arise in the bone tissue remains unclear. Here we show that tumor-specific T cells induce osteolytic bone disease before bone colonization. T cells pro-metastatic activity correlate with a pro-osteoclastogenic cytokine profile, including RANKL, a master regulator of osteoclastogenesis. In vivo inhibition of RANKL from tumor-specific T cells completely blocks bone loss and metastasis. Our results unveil an unexpected role for RANKL-derived from T cells in setting the pre-metastatic niche and promoting tumor spread. We believe this information can bring new possibilities for the development of prognostic and therapeutic tools based on modulation of T cell activity for prevention and treatment of bone metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号