首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. A. Serikaku  J. E. O''Tousa 《Genetics》1994,138(4):1137-1150
The so(mda) (sine oculis-medusa) mutant is the result of a P element insertion at position 43C on the second chromosome. so(mda) causes aberrant development of the larval photoreceptor (Bolwig's) organ and the optic lobe primordium in the embryo. Later in development, adult photoreceptors fail to project axons into the optic ganglion. Consequently optic lobe development is aborted and photoreceptor cells show age-dependent retinal degeneration. The so gene was isolated and characterized. The gene encodes a homeodomain protein expressed in the optic lobe primordium and Bolwig's organ of embryos, in the developing adult visual system of larvae, and in photoreceptor cells and optic lobes of adults. In addition, the SO product is found at invagination sites during embryonic development: at the stomadeal invagination, the cephalic furrow, and at segmental boundaries. The mutant so(mda) allele causes severe reduction of SO embryonic expression but maintains adult visual system expression. Ubiquitous expression of the SO gene product in 4-8-hr embryos rescues all so(mda) mutant abnormalities, including the adult phenotypes. Thus, all deficits in adult visual system development and function result from failure to properly express the so gene during embryonic development. This analysis shows that the homeodomain containing SO gene product is involved in the specification of the larval and adult visual system development during embryogenesis.  相似文献   

2.
Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5 flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.This work was supported by a grant from the National Institute of Neurological Disorders and Stroke.  相似文献   

3.
4.
H Steller  K F Fischbach  G M Rubin 《Cell》1987,50(7):1139-1153
Mutations at the X-linked disconnected locus of D. melanogaster lead to the failure of adult photoreceptor axons to innervate their target cells in the developing optic lobes of the third instar larva, resulting in flies that have rudimentary optic ganglia. The cascade of epigenetic events leading to the adult disconnected phenotype is caused by the misrouting of a larval pioneer nerve, Bolwig's nerve, during embryonic development. In the disconnected mutant this nerve fails to recognize and establish stable connections with its correct synaptic partners. In addition, disconnected affects both the proper aggregation and the movement of the Bolwig neurons to their final location in the embryo. Finally, similar but more subtle defects can be found in a subset of other peripheral neurons in the thoracic and abdominal segments. The different aspects of the phenotype suggest that the disconnected gene plays a role in neuronal cell recognition.  相似文献   

5.
In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including dorsal pouch epithelium, the optic lobe, and head sensory organs, including Bolwig's organ, the larval photoreceptor organ. We found that the optic lobe and larval photoreceptors share the same origin of a few adjacent cells near the center of mitotic domain 20, suggesting that within the mitotic domain, there is a subdomain from which the larval visual system is specified. In addition to the components of the larval visual system, this central region of mitotic domain 20 also generates a part of the eye-antennal disc placode; cells that gives rise to the adult visual system. We also observed that a significant amount of cell death occurred within this domain and used cell ablation experiments to determine the ability of the embryo to compensate for cell loss.  相似文献   

6.
We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a rosette pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination.  相似文献   

7.
视觉对于动物的生存和行为来说是非常重要的。虽然果蝇幼虫的视觉神经系统在组织结构上比成虫简单,但是也具有一定的复杂性和多样性。在最近几年中,随着对果蝇幼虫视觉系统功能的研究取得重要进展,我们对于果蝇幼虫视觉系统的认识更加丰富了。果蝇幼虫视觉系统的结构中,最初级的光感受神经元包括三类,一类是BO/BN(Bolwig's organ/Bolwig's nerve),一类是表达感光分子CRY(cryptochrome)的神经元,另外一类是Ⅳ型DA(classⅣdendriticarborization)神经元;果蝇幼虫视觉系统的次级神经元主要是光节律相关的侧神经元(lateralneurons,LN),它表达Per(period)、Tim(timeless)及Pdf(pigment dispersion factor)等节律相关的蛋白分子;而第三级神经元包括更为下游的、表达果蝇促胸腺激素且直接调控幼虫光偏好的NP394神经元。这三级神经元构成了我们现在所了解的果蝇幼虫视觉神经系统的基本框架。  相似文献   

8.
K J Lee  M Freeman    H Steller 《The EMBO journal》1991,10(4):817-826
Proper development of the larval visual nerve, Bolwig's nerve, of Drosophila melanogaster requires the wild type function of the disconnected (disco) gene. In disco mutants, the nerve does not make stable connections with its targets in the larval brain. We have begun to explore the role of disco in the formation of the nervous system by examining the distribution of disco mRNA and protein in embryos and third instar larvae using in situ hybridization and antibody staining respectively. No differences between the distribution patterns of the two products are detected; disco is expressed in many tissues including both neural and non-neural cells. Many of the cells which express disco undergo extensive movement during development as they participate in major morphogenetic movements. Antibody staining shows that the protein is found in the cell nucleus. Products of the disco gene are detected in cells near the terminus of the growing Bolwig's nerve. In embryos homozygous for either of two mutant alleles of disco, the disco protein is absent near the nerve terminus, although protein distribution elsewhere is indistinguishable from wild type.  相似文献   

9.
10.
The eyes and optic lobes of adult Drosophila melanogaster comprise a highly organized system of interconnected neurons. The eye and optic lobe primordia are physically separate during the embryonic and larval stages of development, and these tissues do not come into contact until the third larval instar, as a consequence of axons growing from the receptor cells of the developing eyes to the primordial optic lobes. After this contact, the axons of the eyes arrange themselves into their complex and orderly adult pattern. Simultaneously, the optic lobe cells begin elaborating axons which organize into their precise adult array. One question posed by this system is: Does cellular pattern formation in either the eyes or optic lobes depend on eye-brain interactions, or do the two tissues organize autonomously? To answer this question, mutations were found which cause abnormal ommatidial array in the eyes and which also perturb the normal adult axon array in the optic lobes. By means of X ray-induced somatic recombination and by genetically controlled mitotic chromosome loss (gynandromorph formation), flies mosaic for genotypically mutant and normal tissue were constructed. Analysis of the neuronal array in mosaic flies in which eye and optic lobe tissue differed genotypically showed that the axon array phenotype of the optic lobe depends on the genotype of the eye tissue innervating that lobe, while the eye phenotype does not depend on optic lobe genotype. Thus, the axonal organization of the D. melanogaster optic lobe has been shown to depend on the transmission of information from the eyes to the optic lobes.  相似文献   

11.
Lampreys, which represent the oldest group of living vertebrates (cyclostomes), show unique eye development. The lamprey larva has only eyespot‐like immature eyes beneath a non‐transparent skin, whereas after metamorphosis, the adult has well‐developed image‐forming camera eyes. To establish a functional visual system, well‐organised visual centres as well as motor components (e.g. trunk muscles for locomotion) and interactions between them are needed. Here we review the available knowledge concerning the structure, function and development of the different parts of the lamprey visual system. The lamprey exhibits stepwise development of the visual system during its life cycle. In prolarvae and early larvae, the ‘primary’ retina does not have horizontal and amacrine cells, but does have photoreceptors, bipolar cells and ganglion cells. At this stage, the optic nerve projects mostly to the pretectum, where the dendrites of neurons in the nucleus of the medial longitudinal fasciculus (nMLF) appear to receive direct visual information and send motor outputs to the neck and trunk muscles. This simple neural circuit may generate negative phototaxis. Through the larval period, the lateral region of the retina grows again to form the ‘secondary’ retina and the topographic retinotectal projection of the optic nerve is formed, and at the same time, the extra‐ocular muscles progressively develop. During metamorphosis, horizontal and amacrine cells differentiate for the first time, and the optic tectum expands and becomes laminated. The adult lamprey then has a sophisticated visual system for image‐forming and visual decision‐making. In the adult lamprey, the thalamic pathway (retina–thalamus–cortex/pallium) also transmits visual stimuli. Because the primary, simple light‐detecting circuit in larval lamprey shares functional and developmental similarities with that of protochordates (amphioxus and tunicates), the visual development of the lamprey provides information regarding the evolutionary transition of the vertebrate visual system from the protochordate‐type to the vertebrate‐type.  相似文献   

12.
The visual system is one of the input pathways for light into the circadian clock of the Drosophila brain. In particular, extra-retinal visual structures have been proposed to play a role in both larval and adult circadian photoreception. We have analyzed the interactions between extra-retinal structures of the visual system and the clock neurons during brain development. We first show that the larval optic nerve, or Bolwig nerve, already contacts clock cells (the lateral neurons) in the embryonic brain. Analysis of visual system-defective genotypes showed that the absence of the afferent Bolwig nerve resulted in a severe reduction of the lateral neurons dendritic arborization, and that the inhibition of nerve activity induced alterations of the dendritic morphology. During wild-type development, the loss of a functional Bolwig nerve in the early pupa was also accompanied by remodeling of the arborization of the lateral neurons. Approximately 1.5 days later, visual fibers that came from the Hofbauer-Buchner eyelet, a putative photoreceptive organ for the adult circadian clock, were seen contacting the lateral neurons. Both types of extra-retinal photoreceptors expressed rhodopsins RH5 and RH6, as well as the norpA-encoded phospholipase C. These data strongly suggest a role for RH5 and RH6, as well as NORPA, signaling in both larval and adult extra-retinal circadian photoreception. The Hofbauer-Buchner eyelet therefore does not appear to account for the previously described norpA-independent light input to the adult clock. This supports the existence of yet uncharacterized photoreceptive structures in Drosophila.  相似文献   

13.
Dynamically regulated cell adhesion plays an important role during animal morphogenesis. Here we use the formation of the visual system in Drosophila embryos as a model system to investigate the function of the Drosophila classic cadherin, DE-cadherin, which is encoded by the shotgun (shg) gene. The visual system is derived from the optic placode which normally invaginates from the surface ectoderm of the embryo and gives rise to two separate structures, the larval eye (Bolwig's organ) and the optic lobe. The optic placode dissociates and undergoes apoptotic cell death in the absence of DE-cadherin, whereas overexpression of DE-cadherin results in the failure of optic placode cells to invaginate and of Bolwig's organ precursors to separate from the placode. These findings indicate that dynamically regulated levels of DE-cadherin are essential for normal optic placode development. It was shown previously that overexpression of DE-cadherin can disrupt Wingless signaling through titration of Armadillo out of the cytoplasm to the membrane. However, the observed defects are likely the consequence of altered DE-cadherin mediated adhesion rather than a result of compromising Wingless signaling, as overexpression of a DE-cadherin-alpha-catenin fusion protein, which lacks Armadillo binding sites, causes similar defects as DE-cadherin overexpression. We further studied the genetic interaction between DE-cadherin and the Drosophila EGF receptor homolog, EGFR. If EGFR function is eliminated, optic placode defects resemble those following DE-cadherin overexpression, which suggests that loss of EGFR results in an increased adhesion of optic placode cells. An interaction between EGFR and DE-cadherin is further supported by the finding that expression of a constitutively active EGFR enhances the phenotype of a weak shg mutation, whereas a mutation in rhomboid (rho) (an activator of the EGFR ligand Spitz) partially suppresses the shg mutant phenotype. Finally, EGFR can be co-immunoprecipitated with anti-DE-cadherin and anti-Armadillo antibodies from embryonic protein extracts. We propose that EGFR signaling plays a role in morphogenesis by modulating cell adhesion.  相似文献   

14.
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia‐like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband‐row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last‐stage stomatopod larvae possess double‐retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last‐stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3–14, 2018  相似文献   

15.
S. Datta  D. R. Kankel 《Genetics》1992,130(3):523-537
Adult optic lobes of Drosophila melanogaster are composed of neurons specific to the adult which develop postembryonically. The structure of the optic lobes and aspects of its development have been described, and a number of mutants that affect its development have been identified. The focus of every screen to date has been on disruption of adult structure or function. Although these loci were originally identified on the basis of viable mutants, some have proven capable of giving rise to lethal alleles. It seems reasonable to assume that mutants which strongly affect development of the imaginal-specific central nervous system may evidence abnormalities during the late larval or pupal stages when the adult central nervous system is undergoing final assembly and might show a lethal phase prior to eclosion (as is true for mutations at the previously defined l(1)ogre locus). We have carried out the first screen of autosomal and sex-linked late larval and pupal lethals to identify mutations that affect the development of the optic lobes. Our screen yielded nine mutants that could tentatively be grouped into three classes, depending on the neuroblast population affected and imaginal disc phenotypes. Two of these, including one that is allelic to l(1)zw1, were chosen for further analysis.  相似文献   

16.
We used confocal microscopy in conjunction with specific antibodies and enhancer trap strains to investigate the development of specific neuronal connections in a simple model system, the larval visual system of Drosophila. We find that the establishment of axonal projections from the larval photoreceptor neurons to their central nervous system targets involves a series of discrete steps. During embryogenesis, the larval optic nerve contacts several different cell types, including optic lobe pioneer (OLP) neurons and a number of glial cells. We demonstrate that OLP neurons are present and project normally in glass (gl) mutant embryos in which the larval optic nerve fails to develop, suggesting that they do not depend on interactions with the larval optic nerve for differentiation and proper axonal projection. The OLPs fail to differentiate properly in disconnected (disco) mutant embryos, where appropriate connections between the larval optic nerve and its targets in the brain are not formed. The disco gene is expressed in the OLPs and may therefore act autonomously to direct the differentiation of these cells. Taken together, our results suggest that the OLPs act as an intermediate target required for the establishment of normal optic nerve projection and connectivity. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The task of the visual system is to translate light into neuronal encoded information. This translation of photons into neuronal signals is achieved by photoreceptor neurons (PRs), specialized sensory neurons, located in the eye. Upon perception of light the PRs will send a signal to target neurons, which represent a first station of visual processing. Increasing complexity of visual processing stems from the number of distinct PR subtypes and their various types of target neurons that are contacted. The visual system of the fruit fly larva represents a simple visual system (larval optic neuropil, LON) that consists of 12 PRs falling into two classes: blue-senstive PRs expressing Rhodopsin 5 (Rh5) and green-sensitive PRs expressing Rhodopsin 6 (Rh6). These afferents contact a small number of target neurons, including optic lobe pioneers (OLPs) and lateral clock neurons (LNs). We combine the use of genetic markers to label both PR subtypes and the distinct, identifiable sets of target neurons with a serial EM reconstruction to generate a high-resolution map of the larval optic neuropil. We find that the larval optic neuropil shows a clear bipartite organization consisting of one domain innervated by PRs and one devoid of PR axons. The topology of PR projections, in particular the relationship between Rh5 and Rh6 afferents, is maintained from the nerve entering the brain to the axon terminals. The target neurons can be subdivided according to neurotransmitter or neuropeptide they use as well as the location within the brain. We further track the larval optic neuropil through development from first larval instar to its location in the adult brain as the accessory medulla.  相似文献   

18.
The morphology of the larval and adult brain of Papilio demoleus, and changes in the cell population and neuropile morphology during the pupal period have been described. The larval brain has more simple fibre areas than that of the adult. Dividing neuroblasts have been found which form the adult neurones. The larval brain contains the three neuromeres (proto-, deuto-, and tritocerebrum). The protocerebrum has well developed corpora pedunculata, a central body, a pons cerebralis and developing optic centres. The corpora ventralia are joined with each other by paired ventral commissures (single in adult). The deutocerebrum is simple and small, the antennal centres are small and simple (ef. adult). The glomerular tritocerebrum is posteroventral to the deutocerebrum, and fibres from the former travel to the crura cerebri. The cortex of the brain consists of four types of glial cells and of association cells, and large and medium sized motor neurones. The number of mitoses is greatest in the larval and prepupal stages; in the pupa it decreases gradually and in late stages it does not occur. Histolysis and pyknosis begin in the prepupa and decrease considerably in the late pupa. The entire neural lamella is broken down in the early pupa. Numerous haemocytes penetrate the laminae of the neural lambella and envelop the entire brain. In the adult, behind the well-developed central body is an ellipsoid body. The medulla interna is divided into two smaller lobes and the deutocerebral lobes are differentiated into cortical and medullary zones. Chiasmata between optic centres are also formed during the pupal period.  相似文献   

19.
Bolwig's organ is the larval light-sensing system consisting of 12 photoreceptors and its development requires atonal activity. Here, we showed that Bolwig's organ formation and atonal expression are controlled by the concerted function of hedgehog, eyes absent and sine oculis. Bolwig's organ primordium was first detected as a cluster of about 14 Atonal-positive cells at the posterior edge of the ocular segment in embryos and hence, atonal expression may define the region from which a few Atonal-positive founder cells (future primary photoreceptor cells) are generated by lateral specification. In Bolwig's organ development, neural differentiation precedes photoreceptor specification, since Elav, a neuron-specific antigen, whose expression is under the control of atonal, is expressed in virtually all early-Atonal-positive cells prior to the establishment of founder cells. Neither Atonal expression nor Bolwig's organ formation occurred in the absence of hedgehog, eyes absent or sine oculis activity. Genetic and histochemical analyses indicated that (1) responsible Hedgehog signals derive from the ocular segment, (2) Eyes absent and Sine oculis act downstream of or in parallel with Hedgehog signaling and (3) the Hedgehog signaling pathway required for Bolwig's organ development is a new type and lacks Fused kinase and Cubitus interruptus as downstream components.  相似文献   

20.
Neuropeptides with similarities to vertebrate tachykinins, designated tachykinin-related peptides (TRPs), have been identified in several insect species. In this investigation we have utilized an antiserum raised to one of the locust TRPs, locustatachykinin-I (LomTK-I), to determine the distribution pattern of LomTK-like immunoreactive (LTKLI) neurons in the developing nervous system of the moth Spodoptera litura. A number of LTKLI neurons could be followed from the larval to the adult nervous system: a set of median neurosecretory cells (MNCs) in the brain, a pair of brain descending neurons and a few sets on neurons in the ventral nerve cord. The distribution of LTKLI neurons in the adult brain is very similar to that seen in other insect species with prominent arborizations in the central body, antennal lobes, mushroom body calyces, optic lobe neuropils and other distinct neuropil areas in the protocerebrum and tritocerebrum. A new finding is the presence of LTKLI neurosecretory cells with axon terminals in the anterior aorta and corpora cardiaca, suggesting for the first time a neurohormonal role of tachykinin-related peptide(s) in insects. During postembryonic development the number of LTKLI neurons in the ventral nerve cord decreases somewhat, whereas the number increases in the brain. Thus the functional roles of TRPs may change to some extent during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号