首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Ostreococcus is a genus of widely distributed marine phytoplankton which are picoplanktonic in size (<2 μm) and capable of rapid growth. Although Ostreococcus has been detected around the world, little quantitative information exists on its contribution to planktonic communities. We designed and implemented a genus-specific TaqMan-based quantitative PCR (qPCR) assay to investigate the dynamics and ecology of Ostreococcus at the USC Microbial Observatory (eastern North Pacific). Samples were collected from 5 m and the deep chlorophyll maximum (DCM) between September 2000 and August 2002. Ostreococcus abundance at 5 m was generally <5.0 × 103 cells ml−1, with a maximum of 8.2 × 104 cells ml−1. Ostreococcus abundance was typically higher at the DCM, with a maximum of 3.2 × 105 cells ml−1. The vertical distribution of Ostreococcus was examined in March 2005 and compared to the distribution of phototrophic picoeukaryotes (PPE) measured by flow cytometry. The largest contribution to PPE abundance by Ostreococcus was ~70% and occurred at 30 m, near the DCM. Despite its relatively low abundance, the depth-integrated standing stock of Ostreococcus in March 2005 was ~30 mg C m−2. Our work provides a new technique for quantifying the abundance of Ostreococcus and demonstrates the seasonal dynamics of this genus and its contribution to picoeukaryote biomass at our coastal sampling station.  相似文献   

2.
The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients—which have low temperature variation (27–29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml−1, predominantly HLII, whereas LLII and ‘rare’ ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml−1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml−1, surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto ‘rare’ picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.  相似文献   

3.
4.
In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.  相似文献   

5.
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.  相似文献   

6.
Styela clava, a solitary ascidian native to the NW Pacific, has become a conspicuous member of fouling communities in NW European waters. As its natural dispersal appears to be limited, the wide distribution of S. clava along coasts within its introduced range may be attributed to secondary spread assisted by human activities. Here, we used six microsatellite loci to examine the genetic diversity and extent of gene flow among S. clava populations in its European introduced range. Samples were collected from 21 populations within Europe (N = 808), 4 populations within the USA and two populations within the native range (Japan). Large variation in genetic diversity was observed among the European populations but were not explained either by the geographic distance from the first introduction area (i.e. Plymouth, UK) nor by the time elapsed since the introduction. No founder effect was observed in the introduced populations, except possibly in Puget Sound (USA). At least two different introductions occurred in Europe, identified as distinct genetic clusters: northern Danish populations (resembling one Japanese population), and the rest of Europe; a sample from Shoreham (England) possibly represents a third introduction. In North America, the population from the Atlantic was genetically similar to the majority of European populations, suggesting a European origin for populations on this seaboard, while populations from the Pacific coast were genetically similar to the same Japanese population as the Danish populations.  相似文献   

7.
Previous work on the genetic diversity of Phaeocystis used ribosomal DNA and internal transcribed spacer (ITS) sequence analyses to show that there is substantial inter- and intraspecific variation within the genus. First attempts to trace the biogeographical history of strains in Antarctic coastal waters were based on a comparison of ITS sequences. To gain deeper insights into the population structure and bloom dynamics of this microalga it is necessary to quantify the genetic diversity within populations of P. antarctica from different locations (i.e., each of the three major gyres in the Antarctic continental waters) and to calculate the gene flow between them. Here we describe methods to quantify genetic diversity and our preliminary results for P. antarctica in comparison to two other colonial species: P. globosa and P. pouchetii. For this study of genetic diversity, two fingerprinting techniques were used. First, amplified fragment-length polymorphisms (AFLPs) were established as a pre-screening tool to assess clone diversity and to select divergent clones prior to physiological investigations. Second, the more-powerful microsatellite markers were established to assess population structure and biogeography more accurately. Results show differences in the AFLP patterns between isolates of P. antarctica from different regions, and that a wide variety of microsatellite motifs could be obtained from the three Phaeocystis species.  相似文献   

8.
Reproductive strategies can have significant consequences for the viability of plant populations. Still, the effects of lower fruit set due to pollen limitation on plant demography and population persistence have rarely been explored. The objectives of this study were to assess the ecological factors determining female reproductive success and to study the impact of pollen limitation on population growth of Dracocephalum austriacum L. (Lamiaceae), a critically endangered species with a discontinuous distribution across Europe. Despite the significant background information gathered on the population dynamics and genetic diversity of D. austriacum, little is known about its reproductive strategy and the effect it has on population growth. Thus, the reproductive system, pollinator assemblage and pollen limitation were studied in natural populations and the impact of pollen-limited seed production on population growth was assessed using existing transition matrix models. The results revealed that D. austriacum is protandrous self-compatible species that produces very few seeds in the absence of pollinators. The flowers are visited by several insects, including legitimate pollinators (e.g., Bombus hortorum, Osmia spp.) and nectar robbers (other Bombus spp., O. aurulenta). Fruit and seed production was significantly pollen-limited in all populations studied. However, despite the positive effect of pollen supplementation on seed production, the resulting increase in seed number did not significantly increase population growth rates in any of the studied populations. Hence, we conclude that populations are demographically stable and current natural seed production is sufficient for the species’ persistence.  相似文献   

9.
Spatial variation in disease risk in wild populations can depend both on environmental and genetic factors. Understanding the various contributions of each factor requires experimental manipulation of both the environment and genetic composition of populations under natural field conditions. We first examined natural patterns of oomycete composition and infection in the eggs of 13 populations of the spotted salamander Ambystoma maculatum. We then performed a fully factorial field transplant of the eggs of six populations to separate the contributions from population of origin and the environment on oomycete resistance in spotted salamanders. Among wild ponds, we found strong variation in oomycete infections in spotted salamander populations and differences in the composition of oomycete communities. In transplant experiments, salamander populations differed in their resistance to oomycete infections via a significant interaction between population of origin and environment. However, not all populations were locally adapted to local conditions. One population was significantly adapted to its home environment, and another one was significantly maladapted. These population effects could originate from differential adaptation of salamander populations to local oomycete communities or environmental conditions that mediate resistance, local adaptation and maladaptation of oomycetes to hosts, or from maternal transmission. Accounting for both environment and population of origin will often be necessary to understand disease dynamics in wild populations.  相似文献   

10.
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = −0.62 to −0.59, p = 0.001–0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = −0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.  相似文献   

11.
To interpret flow cytometric data that are routinely obtained on natural oceanic communities, 23 strains of photosynthetic picoeukaryotes belonging to four classes (Prasinophyceae, Chlorophyceae, Pelagophyceae, and Prymnesiophyceae) and six pigment types were investigated for their light scattering in the forward and right-angle directions, chlorophyll fluorescence, and DNA content as measured by flow cytometry. Cell she was assessed by Coulter counter, and pigment composition was measured by reverse-phase high-performance liquid chromatography. The size and GC% of the nuclear genome of cultured picoeukaryotes was measured from the fluorescence of DNA-specific dyes. Using these two parameters, we could discriminate species within pigment groups. DNA staining of preserved natural samples may also prove useful in discriminating cooccurring populations in situ as long as the communities are not too complex. Using the relationships that we established between size and light-scattering properties of the cells, we estimated equivalent diameters of picoeukaryotes in natural populations to be between 1.3 and 2 μm. Chlorophyll a content was between 6 and 16 fg·cel?1 as calculated from relationships that we established between chlorophyll a content and red fluorescence of the cultured strains. With respect to size, chlorophyll a content, and pigment composition, Pelagomonas sp. strains (Pelagophyceae) appeared to be the most representative of the natural communities in subtropical ocean waters. In contrast, green coccoid strains, which often outcompete other strains in culture, might only be minor contributors to these communities.  相似文献   

12.
Variation in population size over time can influence our ability to identify landscape‐moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape‐moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short‐rotation coppice bio‐energy stands with a four‐year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re‐colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape‐moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.  相似文献   

13.
Virioplankton: Viruses in Aquatic Ecosystems   总被引:24,自引:0,他引:24       下载免费PDF全文
The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities.  相似文献   

14.
Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well-studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10-fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral-encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico-chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate-critical environments.  相似文献   

15.
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5‐hr daylight to “northern” summer conditions of 22‐hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  相似文献   

16.
The state of natural and laboratory cladoceran populations under the effect of sodium lignosulfonate (the main component of waste waters of the Kondopoga pulp and paper mill (PPM) polluting the Onego Lake) was analyzed. An increase in the body length and fertility of Cladocera under the effect of sodium lignosulfonate was observed in long-term toxicological experiments. A hypothesis on the effect that this component has on the increased rise in Daphnia cristata Sars abundance, which changes the dynamics of its population, is proposed.  相似文献   

17.
Relatively little is known about large-scale spatial and temporal fluctuations in bacterioplankton, especially within the bacterial families. In general, however, a number of abiotic factors (namely, nutrients and temperature) appear to influence distribution. Community dynamics within the Vibrionaceae are of particular interest to biologists because this family contains a number of important pathogenic, commensal, and mutualist species. Of special interest to this study is the mutualism between sepiolid squids and Vibrio fischeri and Vibrio logei, where host squids seed surrounding waters daily with their bacterial partners. This study seeks to examine the spatial and temporal distribution of the Vibrionaceae with respect to V. fischeri and V. logei in Hawaii, southeastern Australia, and southern France sampling sites. In particular, we examine how the presence of sepiolid squid hosts influences community population structure within the Vibrionaceae. We found that abiotic (temperature) and biotic (host distribution) factors both influence population dynamics. In Hawaii, three sites within squid host habitat contained communities of Vibrionaceae with higher proportions of V. fischeri. In Australia, V. fischeri numbers at host collection sites were greater than other populations; however, there were no spatial or temporal patterns seen at other sample sites. In France, host presence did not appear to influence Vibrio communities, although sampled populations were significantly greater in the winter than summer sampling periods. Results of this study demonstrate the importance of understanding how both abiotic and biotic factors interact to influence bacterial community structure within the Vibrionaceae.  相似文献   

18.
Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in host–pathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens, such as fungal lesions referred to generically as “leaf spot disease,” are particularly responsive to increased moisture levels, but the manner in which the abiotic environment drives disease dynamics, and how these diseases regulate natural plant populations, is not fully understood. We investigate (1) the impact of ambient soil moisture and diffuse light on the prevalence of a leaf spot pathogen (Phyllosticta sp.) in a natural population of Polygonatum biflorum, an understory herb native to deciduous forest understories in the eastern US, and (2) the effects of the fungal pathogen on the survival, growth, and abundance of the plants. We tracked six P. biflorum populations and disease incidence, as well as soil moisture and diffuse light, between 2003 and 2005 in the understory deciduous forest of the southern Appalachian Mountains, North Carolina, USA. Results show that both the occurrence of P. biflorum and the prevalence of P. biflorum leaf spot disease are highest where soil moisture is intermediate and diffuse light is lowest. Disease occurrence depends upon plant presence, but it also adversely impacts plant survival, abundance, and growth. These results suggest that leaf spot disease is likely to impact population dynamics, which in turn vary as a function of environmental drivers.  相似文献   

19.
Bacteria undergo adaptive diversification over a matter of days in test tubes, but the relevance to natural populations remains unclear. Here, we report real‐time adaptive diversification of the bacterium Pseudomonas fluorescens in its natural environment, soil. Crucially, adaptive diversification was much greater in the absence of the established natural microbial community, suggesting that resident diversity is likely to inhibit, rather than promote, adaptive radiations in natural environments. Rapid diversification is therefore likely to play an important role in the population and community dynamics of microbes in environments where resident communities are perturbed, such as by agriculture, pollution and antibiotics.  相似文献   

20.
We conducted an outdoor container experiment to test the hypothesis that the genetic composition of resident populations influences the establishment success of immigrant species. We manipulated the genetic compositions (source populations) of populations of the water flea Daphnia magna, a strong competitor in pond and shallow lake zooplankton communities, and monitored the establishment success of immigrant cladoceran species of a regional species pool. We show that establishment success is affected by the source population of the resident D. magna as well as by the presence/absence of macrophytes and the presence/absence of fish in the containers. Our results provide evidence that the genetic composition of resident populations can impact community assembly and metacommunity dynamics, and that community genetics can influence ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号