首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
The diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important pest of cultivated brassicaceous crops worldwide. The host plant preferences, developmental biology and survival and longevity of P. xylostella are relatively well understood on commercial crop species; however, its relationship with brassicaceous weeds is poorly known. Sinapis arvensis L., Erysimum cheiranthoides L. and Capsella bursa‐pastoris (L.) Medicus are among the most common brassicaceous weeds worldwide and can serve as important bridge hosts of P. xylostella. In this study, preference and performance of P. xylostella were compared on these weed species. In free‐choice situations, females deposited 5.5 and 18.8 times more eggs on S. arvensis than on E. cheiranthoides and C. bursa‐pastoris, respectively. Survival from neonate to pupa and from pupa to adult was highest on S. arvensis and E. cheiranthoides and lowest on C. bursa‐pastoris. Development was fastest, foliage consumption was greatest, pupae and silk cocoons were heaviest, adult body masses and longevities were highest and forewings were largest for both females and males when reared as larvae on S. arvensis. Realized fecundity of new generation adults was highest for individuals reared on S. arvensis compared to those reared on E. cheiranthoides or C. bursa‐pastoris. Relative growth rates of pupae and adults were highest on S. arvensis, suggesting that this plant species is a high‐quality host for P. xylostella compared with other species tested. Potential impacts of these wild brassicaceous species on P. xylostella populations are discussed.  相似文献   

2.
The diamondback moth, Plutella xylostella (L.) (Lep.: Plutellidae) is one of the most important pests of cruciferous plants throughout the world. In recent years, it has been identified as a serious pest of the cauliflower fields in Tehran province. Resistance of P. xylostella to all main groups of insecticides has been recorded and it is ranked in the 20 most resistant pest species reported until now. According to many researchers, to solve the problem of pest resistance to chemical pesticides, an integrated pest management programme should be used. Despite this condition, it seems that the use of resistant cauliflower cultivars is an appropriate policy for integrated control of the pest in the field. In order to identify the most resistant cultivar in the field, eight cauliflower cultivars in a completely randomised design with five replicates were planted at the Shahed University research field (south of Tehran). Density of eggs, larvae and pupae of P. xylostella were measured every 10 days in these cultivars. The results showed that there is no significant difference between numbers of eggs per plant on different cultivars. But number of larvae and pupae per plant were significantly different among different cultivars. Smilla and Snow mystique cultivars had the highest number of larvae and pupae. On the other hand, Buris and Snow crown cultivars had the lowest number of pupae and Snow crown and SG cultivars had the lowest number of larvae per plant. According to the results, the Buris and Snow crown cultivars had the lowest infestation and had a kind of resistance to pest.  相似文献   

3.
The functional response of adult Nabis kinbergii (Hemiptera: Nabidae) to density of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) was investigated under laboratory conditions. Holling' s (1959) type Ⅱ model was found to be a good fit for the observed functional response of this predator. The numbers of P. xylostella consumed increased with temperature from 15℃ to 35℃. The maximum number of prey killed was observed at 35℃, with average of 10.3 and 8.3 forth instar larvae consumed by adult females and males of N. kinbergii, respectively. The predation of N. kinbergii on P. xylostella increased with successive immature stages. The number of prey consumed by predators decreased as the body size of prey increased. An average of 131 eggs or 95 larvae of P. xylostella were killed by a single of female adult in 24 hours at 24"C. The pupae of P. xylostella were observed to be eaten by fifth instar nymphs and adults N. kinbergiiin numbers of less than an average of 0.7 pupae per predator in 24 hours at 24"C. Predation preference by N. kinbergii was also investigated. The number of P. xylostella and Myzus persicae killed by female N. kinbergii was not significantly different, but males killed significantly more P. xylostella than M. persicae. Both eggs and larvae of P. xylosteUa were killed in significantly greater number than those of Pieris rapae in the same feeding arena.  相似文献   

4.
Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture‐dependent method and PCR‐DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty‐five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella.  相似文献   

5.
Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely to have consequent effects on parasitoids specialising on such pests. A better understanding of the interaction between transgenic plants, pests and parasitoids is important to limit disruption of biological control and to provide background knowledge essential for implementing measures for the conservation of parasitoid populations. It is also essential for investigations into the potential role of parasitoids in delaying the build-up of Bt-resistant pest populations. The diamondback moth (Plutella xylostella), a major pest of brassica crops, is normally highly susceptible to a range of Bt toxins. However, extensive use of microbial Bt sprays has led to the selection of resistance to Bt toxins in P. xylostella. Cotesia plutellae is an important endoparasitoid of P. xylostella larvae. Although unable to survive in Bt-susceptible P. xylostella larvae on highly resistant Bt oilseed rape plants due to premature host mortality, C. plutellae is able to complete its larval development in Bt-resistant P. xylostella larvae. Experiments of parasitoid flight and foraging behaviour presented in this paper showed that adult C. plutellae females do not distinguish between Bt and wildtype oilseed rape plants, and are more attracted to Bt plants damaged by Bt-resistant hosts than by susceptible hosts. This stronger attraction to Bt plants damaged by resistant hosts was due to more extensive feeding damage. Population scale experiments with mixtures of Bt and wildtype plants demonstrated that the parasitoid is as effective in controlling Bt-resistant P. xylostella larvae on Bt plants as on wildtype plants. In these experiments equal or higher numbers of parasitoid adults emerged per transgenic as per wildtype plant. The implications for integrated pest management and the evolution of resistance to Bt in P. xylostella are discussed.  相似文献   

6.
The diamondback moth, Plutella xylostella, is a worldwide pest of brassicas, and its biology and ecology have been extensively studied over recent years. Despite the importance of mathematical models to the management of insect pests, no stochastic model has been developed to date for P. xylostella. In this context, the study aimed to develop a stochastic model capable of describing the stage emergence of P. xylostella under field conditions. The stochastic model was developed using simple nonlinear functions based on the laboratory data on development times under constant temperatures. Comparison between estimated and observed cumulative proportions of egg hatch, pupation and adult emergence recorded in the field in Southern Brazil shows that the model accurately describes the stage emergence of P. xylostella. The developed model shows potential to estimate the stage emergence of P. xylostella under field conditions, and can add significant advances to the management of this pest.  相似文献   

7.
The diamondback moth, Plutella xylostella, is one of the most destructive pests worldwide and its management relies exclusively on frequent application of chemical insecticides. Resistance to common insecticides is now widespread, and novel classes of insecticides are needed. Entomopathogenic bacteria and their related products play an important role in the management of this pest. In the present work, one bacterial strain was separated from infected pupae of P. xylostella collected from field and its pathogenicity was evaluated. On the basis of the 16S ribosomal RNA sequencing, BLASTN, and phylogenetic analysis, this bacterial isolate was identified as Pseudomonas cedrina. Oral administration of P. cedrina at levels above 10,000 CFU/ml gave significant mortality to P. xylostella larvae. The pathogenicity was also observed by reduced longevity and fecundity in adult females. However, when live bacterial cells were removed, the cultured broth lost any pathogenicity. In response to the bacterial infection, P. xylostella expressed antimicrobial and stress‐associated genes. A mixture treatment of P. cedrina and Bacillus thuringiensis showed an additive effect on larval mortality of P. xylostella. These results indicated that P. cedrina is an opportunistic entomopathogen without secretion of toxins. Furthermore, the additive effect of P. cedrina and B. thuringiensis provide a new insight to develop new strategy for controlling P. xylostella.  相似文献   

8.
This study evaluated the predation by Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae) at various densities of larvae and pupae of the pest Plutella xylostella (L.) (Lepidoptera: Plutellidae). We tested predator behavior of female P. nigrispinus at six experimental densities (1, 5, 10, 15, 20, or 25 prey items in a 1‐l transparent plastic container, replicated 15 times for each density) of both the fourth instar and pupae of P. xylostella. The number of prey consumed was monitored every 15 min for 12 h and was subsequently monitored at 24 h. Podisus nigrispinus females were weighed before and after the experiments to determine the effect of different densities of prey on their weight gain. Female predators had a Type‐II functional response, with attack rate estimated at 1.387 and 0.260 and a handling time of 0.091 and 0.183 h?1 for larvae and pupae, respectively. Podisus nigrispinus consumed on average 10.9 larvae or 5.5 pupae in 24 h. Despite the similarity of the response type, P. nigrispinus preferred to feed on larvae, rather than on pupae.  相似文献   

9.
[目的]microRNA(miRNA)在昆虫生长发育中发挥重要功能,本研究拟通过鉴定小菜蛾不同发育阶段的miRNA,挖掘幼虫偏好表达的miRNA及其潜在功能.[方法]对小菜蛾卵、3龄幼虫、蛹和成虫的miRNA开展高通量测序,结合生物信息学分析方法,筛选在幼虫期偏好表达的miRNA;借助实时荧光定量PCR技术,验证候选m...  相似文献   

10.
Diamondback moth, Plutella xylostella (L.), is a specialist pest on cruciferous crops of economic importance. The large‐scale use of chemical insecticides for the control of this insect pest has caused a number of challenges to agro‐ecosystems. With the advent of the omics era, genetic pest management strategies are becoming increasingly feasible and show a powerful potential for pest control. Here, we review strategies for using transgenic plants and sterile insect techniques for genetic pest management and introduce the major advances in the control of P. xylostella using a female‐specific RIDL (release of insects carrying a dominant lethal gene) strategy. Further, the advantages of gene drive developed in combination with sex determination and CRISPR/Cas9 systems are addressed, and the corresponding prospects and implementation issues are discussed. It is predictable that under the policy and regulation of professional committees, the genetic pest control strategy, especially for gene drive, will open a new avenue to sustainable pest management not only for P. xylostella but also for other insect pests.  相似文献   

11.
12.
13.
Two natural alkaloids viz., Vasicine acetate and 2-Acetyl benzylamine, isolated from Adhatoda vasica leaves, showed antifeedant, larvicidal and moult inhibiting properties against diamondback moth Plutella xylostella in laboratory experiments. Maximum antifeedant activity of 98.5% was recorded at 1000 ppm concentration of Vasicine acetate treatment, whereas as 2-Acetyl benzyl amine recorded only 71.4% antifeedant activity at 1000 ppm concentration. Azadirachtin treatment presented 82% antifeedant activity at the highest concentration (1000 ppm). Both the active compounds of A. vasica showed lethal toxicity on larvae and pupae. The highest larvicidal and pupicidal activities were recorded in 2-Acetyl benzylamine treatment at 125 ppm concentration. The two A. vasica compounds also affected the normal growth and development and moulting process of P. xylostella. Final moulting of larvae into pupae was disrupted by the treatments, which resulted in larval–pupal intermediates and abnormal pupae. Treatments also produced small-size pupae and malformed adults with poorly developed wings.  相似文献   

14.
Aims: To isolate and formulate a native strain of Zoophthora radicans naturally infecting larvae of diamondback moth, Plutella xylostella, existing in South Australia and to provide evidence that formulation of the fungus is effective against P. xylostella larvae, and therefore, it could be used as a tool in pest management of this insect. Methods and Results: Dose–response bioassays using formulated and unformulated forms of the fungus strain were carried out against third instar larvae of P. xylostella. Results obtained have indicated a significant increase in the larval mortality when higher concentrations of a formulated form of the fungus strain were applied compared to the treatments with the unformulated form (85·0 vs 57·5% of larval mortality, respectively, at the top concentration of 107 conidia/ml). The median lethal concentration (LC50) for a formulated form was 100 times less than that of the unformulated form when they were applied against the third instar larvae of P. xylostella. In addition, the formulation used in the present bioassays has preserved the viability of introduced fungus conidia for longer time in comparison with the unformulated conidia. Conclusions: The effective application of a formulated fungus strain against P. xylostella larvae constitutes the first step towards its use in pest management of this insect. Significance and Impact of the Study: The formulated fungus in inverted emulsion could be used as an alternative tool to insecticides in pest management of P. xylostella larvae because of the development of resistance to insecticides in the treated larvae.  相似文献   

15.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) is one of the most important pests of cruciferous plants throughout the world. In recent years, this insect has been a serious pest for cabbage fields in Tehran province. Resistance of P. xylostella to all main groups of insecticides has been recorded and it is ranked in the 20 most resistant pest species reported up to now. According to many researchers, to eliminate the problem of pest resistance to chemical pesticides, an integrated pest management programme should be used. In line with this, the uses of microbial control agents (MCAs) are discussed. The bacterium, Bacillus thuringiensis (Bt) is one of microbial control agents of pests. It is characterised by its ability to produce proteic crystalline inclusions during sporulation. Cry1 protein has insecticidal activity and is highly specific to certain insects and not toxic to unrelated insects, plants or vertebrates. In this work, the pathogenicity of some Bt isolates, including Dipel, 20, 29, 79 and 87, was tested against P. xylostella and the lethal concentrations (LC50) of their crystal proteins to P. xylostella third larval instar was determined. The experiment was designed in factorial in randomised complete design with 5 treatments (different concentrations including 104, 105, 106, 107, 108 CFU/ml and 5 replications and with 10 third larval instars. Spore–crystal complex was applied to the surface of natural diets (cabbage leaves) and the mortality of P. xylostella larvae was assessed 120?h after exposure of Bt toxin in each treatment. Results showed that percentage of survival was significantly higher for control treatment. Results also showed that after 5?days, LC50 for isolates of Dipel, 20, 29, 79 and 87 were equal to 1?×?106, 1?×?105, 5?×?105, 4?×?105 and 1?×?104 CFU/ml, respectively. LT50 were equal to 93.71, 48.04, 71, 40.49 and 75.28?h. Of and most the percentage larval mortality relate to attendance 87 and also at least percentage mortality is related to the groom Dipel.  相似文献   

16.
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the main pest of brassica crops worldwide. The ringlegged earwig, Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), has been reported as a potential predator of lepidopteran larvae, including this pest, and may therefore be used for biological control. Knowledge about predator–prey interactions is important to establish pest management strategies. Therefore, the objective of this work was to evaluate the influence of the developmental stage (larva and pupa) and density of P. xylostella on the preference and functional response of E. annulipes adult females. We used choice and no‐choice tests to evaluate the foraging behavior and preference of E. annulipes on DBM life stages and varied prey density to assess the type of functional response of the ringlegged earwig. Larvae were preferred over pupae, and the predator’s functional response was type II for both prey stages. Our results report the potential of E. annulipes as a biocontrol agent of P. xylostella. Understanding their interactions may help in decision‐making and optimization of integrated management strategies.  相似文献   

17.
Broflanilide is a novel meta-diamide insecticide that acts as a γ-aminobutyric acid-gated chloride channel allosteric modulator. With its unique mode of action, broflanilide has no known cross-resistance with existing insecticides and is expected to be an effective tool for the management of insecticide resistance. Establishing the baseline susceptibility to this insecticide is an essential step for developing and implementing effective resistance management strategies. Here we evaluated the baseline susceptibility to broflanilide for 3 cosmopolitan lepidopteran pest species, Helicoverpa armigera, Plutella xylostella, and Spodoptera frugiperda. Broflanilide exhibited high activity against populations sampled in the major distribution range of these pests in China, with median lethal concentrations (LC50) ranging between 0.209 and 0.684, 0.076 and 0.336, and 0.075 and 0.219 mg/L for H. armigera, P. xylostella, and S. frugiperda, respectively. Among-population variability in susceptibility to broflanilide was moderate for H. armigera (3.3-fold), P. xylostella (4.4-fold), and S. frugiperda (2.9-fold). The recommended diagnostic concentrations for H. armigera, P. xylostella, and S. frugiperda were 8, 4, and 2 mg/L, respectively. Little or no cross-resistance to broflanilide was detected in 3 diamide-resistant strains of P. xylostella and 1 spinosyns-resistant strain of S. frugiperda. Our results provide critical information for the development of effective resistance management programs to sustain efficacy of broflanilide against these key lepidopteran pests.  相似文献   

18.
Laboratory studies were performed to explore the effects of host-plant quality on the vulnerability of Plutella xylostella to Bacillus thuringiensis. P. xylostella were kept on different host plants, including Brassica pekinensis (Chinese cabbage) cv. Hero, Brassica oleracea var. botrytis (cauliflower) cv. Royal, and B. oleracea var. capitata (common cabbage) cv. Globe Master (white cabbage) and cv. Red Dynasty (red cabbage) for at least two generations. These host plants are considered as the high (Chinese cabbage), intermediate (cauliflower and white cabbage) and low-quality (red cabbage) hosts for P. xylostella. The vulnerability of the pest larvae was then tested using two formulation of B. thuringiensis var. kurstaki, including Biolarv® and Biolep®. The results demonstrated that the susceptibility of P. xylostella to B. thuringiensis was influenced by host-plant quality. Indeed, B. thuringiensis acted better on the pest fed on the low-quality host plant compared with that on the high-quality host plant. The interaction between the pathogen and plant quality/resistance resulted in more mortality of the pest larvae, implying a synergistic effect. From a pest management viewpoint, these findings may be promising for the integration of the pathogen and the low-quality/partially resistant host plants against P. xylostella in field studies.  相似文献   

19.
We assessed the potential of annual buckwheat, Fagopyrum esculentum Moench, to lead to improved parasitism of lepidopteran cabbage pests over four years. Pest, parasitism, and hyperparasitism rates were monitored in replicated cabbage plots (12 × 20 m) with or without 3 m wide buckwheat borders from 2000 to 2003. Floral borders did not significantly increase egg, larval, or pupal densities of cabbage looper, Trichoplusia ni (Hübner), imported cabbageworm, Pieris rapae (L.), or diamondback moth, Plutella xylostella (L.). Buckwheat increased parasitism rates by Voria ruralis (Fallen) on T. ni larvae and Cotesia rubecula (Marshall) on P. rapaelarvae over four years. Parasitism by Diadegma insulare (Cresson) on P. xylostella larvae was higher in buckwheat than control plots in the first year, and parasitism by Euplectrus plathypenae (Howard) on T. ni larvae was lower in buckwheat than control plots in the second year. The hyperparasitoid Conura side (Walker) attacked D. insulare all four years, but buckwheat did not affect hyperparasitism rates. The effect of spatial scale on pest densities and parasitism in 2001 was evaluated by comparing plots separated at least 67 m (nearby) versus 800 m apart (isolated). T. ni pupae and P. rapae eggs and pupae were more abundant in plots in closer proximity, whereas P. xylostella densities did not vary by the spatial separation of plots. Tachinids and Pteromalus puparum (L.) attacked more P. rapae in nearby plots. E. plathypenae responded to the treatment × scale interaction, parasitizing more in control than buckwheat when plots were isolated but not when plots were nearby.  相似文献   

20.
The use of floral resources to improve the efficiency of natural enemies has grown in recent years, although their effect on pest populations has been overlooked. To understand how access to food resources by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae) affects their reproduction, the effects of amino acids and carbohydrates (i.e. fructose, glucose and sucrose) on the longevity, lifetime fecundity, egg viability and population growth of this important pest of brassicas are evaluated. Carbohydrate intake increases longevity, oviposition period and lifetime fecundity of P. xylostella. Oviposition period and fecundity are six‐fold higher in females that consumed carbohydrates. By contrast, amino acid intake by adults does not affect reproductive parameters, even when mixed with carbohydrates. The estimated demographic parameters indicate that the adult diet is important for pest population growth because the net reproductive rate and the intrinsic rate of increase are higher when females have access to carbohydrates. These results are important from both physiological and ecological points of view. The increasing use of flowering plants as a microhabitat and food source for natural enemies may also result in benefits for herbivorous insects, compromising any success in pest control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号