首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ugandan honey bees (Apis mellifera L.) produce honey, and are key pollinators within commercial crops and natural ecosystems. Real-time RT-PCR was used to screen immature and adult bees collected from 63 beekeeping sites across Uganda for seven viral pathogens. No samples tested positive for Chronic bee paralysis virus, Sacbrood virus, Deformed wing virus, Acute bee paralysis virus, Apis iridescent virus or Israeli acute paralysis virus. However, Black queen cell virus (BQCV) was found in 35.6% of samples. It occurred in adults and larvae, and was most prevalent in the Western highlands, accounting for over 40% of positive results nationally.  相似文献   

2.
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy‐consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.  相似文献   

3.
In agriculture, honey bees play a critical role as commercial pollinators of crop monocultures which depend on insect pollination. Hence, the demise of honey bee colonies in Europe, USA, and Asia caused much concern and initiated many studies and research programmes aiming at elucidating the factors negatively affecting honey bee health and survival. Most of these studies look at individual factors related to colony losses. In contrast, we here present our data on the interaction of pathogens and parasites in honey bee colonies. We performed a longitudinal cohort study over 6 years by closely monitoring 220 honey bee colonies kept in 22 apiaries (ten randomly selected colonies per apiary). Observed winter colony losses varied between 4.8% and 22.4%; lost colonies were replaced to ensure a constant number of monitored colonies over the study period. Data on mite infestation levels, infection with viruses, Nosema apis and Nosema ceranae, and recorded outbreaks of chalkbrood were continuously collected. We now provide statistical evidence (i) that Varroa destructor infestation in summer is related to DWV infections in autumn, (ii) that V. destructor infestation in autumn is related to N. apis infection in the following spring, and most importantly (iii) that chalkbrood outbreaks in summer are related to N. ceranae infection in the preceding spring and to V. destructor infestation in the same season. These highly significant links between emerging parasites/pathogens and established pathogens need further experimental proof but they already illustrate the complexity of the host–pathogen-interactions in honey bee colonies.  相似文献   

4.
Bees are fundamentally important for pollination services and declines in populations could have significant economic and environmental implications. Pesticide exposure and pathogen infection are recognised as potential stressors impacting upon bee populations and recently there has been a surge in research on pesticide–disease interactions to reflect environmentally realistic scenarios better. We critically analyse the findings on pesticide–disease interactions, including effects on the survival, pathogen loads and immunity of bees, and assess the suitability of various endpoints to inform our mechanistic understanding of these interactions. We show that pesticide exposure and pathogen infection have not yet been found to interact to affect worker survival under field‐realistic scenarios. Colony‐level implications of pesticide effects on Nosema infections, viral loads and honey bee immunity remain unclear as these effects have been observed in a laboratory setting only using a small range of pesticide exposures, generally exceeding those likely to occur in the natural environment, and assessing a highly selected series of immune‐related endpoints. Future research priorities include the need for a better understanding of pesticide effects on the antimicrobial peptide (AMP) component of an individual's immune response and on social defence behaviours. Interactions between pesticide exposure and bacterial and fungal infections have yet to be addressed. The paucity of studies in non‐Apis bee species is a further major knowledge gap.  相似文献   

5.
Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.  相似文献   

6.
  1. Deformed wing virus (DWV), notorious for its virulence in the western honey bee (Apis mellifera) when vectored by the ectoparasitic mite Varroa destructor, is also widespread among wild bumble bee species, presumably through spillover from honey bees. Experimental studies on the virulence of DWV in Bombus spp. have provided equivocal results and have until now been confined to bumble bees under laboratory conditions.
  2. Here, we inoculated commercially reared Bombus terrestris workers with DWV-A through feeding or injection and introduced them into experimental colonies placed in the field, thus exposing them to the environment and associated stressors. We monitored the survival of inoculated worker bumble bees and quantified their viral load at 10 days post inoculation.
  3. Bombus terrestris workers injected with DWV-A supported high viral loads and exhibited significantly reduced median survival compared to controls. Bumble bees inoculated by feeding had low or zero detectable viral loads while their mortality did not differ from the control group.
  4. Our results demonstrate that, although DWV-A is pathogenic for commercial B. terrestris, the risks for individual fitness from spillover of DWV-A during foraging on shared flowers appear limited.
  5. The findings of this experiment also highlight the necessity to address the potential context-dependence of virulence when evaluating the impact of a pathogen in an alternative host.
  相似文献   

7.
The honey bee Apis mellifera L. is a crucial insect in the agricultural industry and natural ecosystem by being a major pollinator. Nevertheless, honey bee population has been recently facing a decline. Among the several factors responsible for this decline, deformed wing virus (DWV) is considered a primary cause that negatively affects honey bee health. DWV is a cosmopolitan honey bee pathogen and causes morphological disadvantages in individual honey bees and colony collapse. Regarding the horizontal transmission of DWV, in addition to Varroa destructor, a well-known major vector of DWV, flowers have recently been implied as a transmission route. Therefore, in this study, we detected DWV from various substances, including flowers, honey bee feces, pupa, larva, nurse bee, surface of nurse bee, pollen collected by forager bee, and forager bee samples in four strawberry greenhouses, which could suggest the potential for the horizontal transmission of DWV in the semi-field condition. We also detected DWV in pollen collected by DWV-negative forager bees, implying that flowers can serve as a potential source of virus infection. These findings suggest that the surrounding environment such as shared floral sources affects the spread of DWV.  相似文献   

8.
Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.  相似文献   

9.
During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor,Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow up in-depth survey across all Greek regions is required to provide context to these preliminary findings.  相似文献   

10.
A successful control or eradication programme using biological control or genetically-mediated methods requires knowledge of the origin and the extent of wasp genetic diversity. Mitochondrial DNA variation in the native and invaded range of the social wasp Vespula germanica was used to examine intra-specific genetic variation and invasive source populations. We also examined wasps for the presence of four viruses found in honey bees: Acute bee paralysis virus, Deformed wing virus, Israeli acute paralysis virus and Kashmir bee virus. German wasps showed reduced genetic diversity in the invaded range compared to that of their native range. Populations in the introduced range are likely to have arrived from different source populations. All four viral honey bee pathogens were found in V. germanica, although they varied in their distribution and strain. Multiple introductions of German wasps have occurred for most invaded regions, though some populations are genetically homogenous. The differing locations of origin will guide researchers searching for biocontrol agents and the reduced genetic diversity may make these wasps a potentially viable target for control via gene drives.  相似文献   

11.
Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems.  相似文献   

12.
Synergistic combinations of biological and chemical insecticides might yield promising alternatives for soil insect pest management. In turfgrass of the Northeast U.S., control of root-feeding scarab larvae is highly dependent on conventional insecticides. Studies on interactions between entomopathogenic nematodes and neonicotinoid insecticides, however, demonstrate the feasibility of synergies as an approach for reduced-risk curative control. To understand the breadth of potential synergies, we screened numerous combinations of biological control agents with sublethal doses of neonicotinoids against third instars. Interactions were characterized as synergistic, additive or antagonistic. The most promising combinations identified in laboratory bioassays were advanced to greenhouse pot studies and then to field trials featuring microplots with artificially infested populations. To reveal variation across scarab species, trials were conducted on Amphimallon majale and Popillia japonica. Synergies were consistent across trials and specific to white grub species. For A. majale, synergistic combinations of Heterorhabditis bacteriophora with imidacloprid and clothianidin were discernible in laboratory, greenhouse and field trials. For P. japonica, synergistic combinations of Beauveria bassiana and Metarhizium anisopliae with both neonicotinoids were discernible in the laboratory and greenhouse, but not in the field. For both species, antagonistic interactions were discernible between Bt-products and both neonicotinoids. While nematode-neonicotinoid synergies among scarab larvae have been examined before, fungi-neonicotinoid synergies are unreported. In the context of previous studies, however, no patterns emerge to explain variation across target species or control agent. Further study of non-additive interactions will guide how biological and chemical products could be combined to enhance soil insect pest management.  相似文献   

13.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.  相似文献   

14.
The recent decline in managed honey bee populations, Apis mellifera L. (Hymenoptera: Apidae), has caused scientific, ecological, and economic concern. Research into the formation of reactive oxygen species (ROS), antioxidative defense mechanisms, and oxidative stress can contribute to our understanding of bee survival and conservation of this species. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S‐transferase (GST) enzymes together with levels of malondialdehyde (MDA) were measured in summer and winter honey bees sampled from three colonies. One colony was stationary (C1), entering the winter period having accumulated Robinia pseudoacacia L. (Fabaceae) honey, and two were migratory (C2 and C3), entering the winter period with mainly Tilia (Malvaceae) and Brassica (Brassicaceae) honey, respectively. Compared to summer workers, winter worker bees had decreased SOD and GST activity, and MDA level, whereas CAT activity increased in all three colonies. We also demonstrated that seasonality is the main factor responsible for changes in antioxidant enzymes and MDA levels in worker honey bees. Overall, our results indicate a difference between summer and winter worker bees, pointing at a reduced level of antioxidant enzyme defenses during overwintering which may be due to a decrease in production of ROS. The decreased levels of MDA measured in winter honey bees confirm this. As ROS are actively used by insects as a defense mechanism to fight pathogens, we suggest that reduced production of ROS contributes to higher susceptibility of winter honey bees to infections and reduced overwinter survival.  相似文献   

15.
16.
The ubiquitous use of agrochemicals is one driver for the ongoing loss of insect biomass and diversity. Data show that field‐realistic concentrations of neonicotinoid insecticides can negatively affect both population density and the fitness of solitary bees. However, the underlying mechanisms for these effects remain poorly understood. Here, using an established semi‐field experimental set‐up and Osmia cornuta as a solitary bee model, we examined the effects of field‐realistic concentrations of a common neonicotinoid insecticide (clothianidin) on male larvae and adults. Besides measuring lethal (i.e., overwintering success and adult survival) and sub‐lethal endpoints (i.e., emergence mass and emergence duration), we examined, for the first time, potential effects on the male reproductive physiology of a solitary bee (i.e., sperm quantity and viability). The data revealed no significant effects on any of the measured response variables. This may be due to the low degree of clothianidin exposure (0.56 ng g?1) and/or the apparent low susceptibility of solitary bee larvae to neonicotinoids. Furthermore, it is conceivable that ideal foraging conditions, combined with optimal weather and lack of other environmental stressors, may have improved the ability of bees to cope with the insecticide. To reliably assess and understand the environmental hazards of agrochemicals, a holistic approach, including laboratory, semi‐field and field data is required. Knowledge of underlying mechanisms will help to mitigate the current global declines of insect populations.  相似文献   

17.
Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.  相似文献   

18.
19.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   

20.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号