首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The acetogenic bacterium Acetobacterium woodii is able to reduce CO2 to acetate via the Wood-Ljungdahl pathway. Only recently we demonstrated that degradation of 1,2-propanediol by A. woodii was not dependent on acetogenesis, but that it is disproportionated to propanol and propionate. Here, we analyzed the metabolism of A. woodii on another diol, 2,3-butanediol. Experiments with growing and resting cells, metabolite analysis and enzymatic measurements revealed that 2,3-butanediol is oxidized in an NAD+-dependent manner to acetate via the intermediates acetoin, acetaldehyde, and acetyl coenzyme A. Ethanol was not detected as an end product, either in growing cultures or in cell suspensions. Apparently, all reducing equivalents originating from the oxidation of 2,3-butanediol were funneled into the Wood-Ljungdahl pathway to reduce CO2 to another acetate. Thus, the metabolism of 2,3-butanediol requires the Wood-Ljungdahl pathway.  相似文献   

3.
Summary The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.  相似文献   

4.
Cell extracts of a nonsporeforming strictly anaerobic bacterium, Acetobacterium woodii produced acetate in N-tris(Hydroxymethyl)methyl-2-aminoethane sulfonic acid or phosphate buffers from hydrogen and carbon dioxide. The formation of acetate was not dependent on the presence of ATP in the reaction mixture; ADP also did not influence the acetate production. Since acetic acid is the main fermentation product during growth of A. woodii with H2 and CO2, ATP must be synthesized in the course of acetate formation. The possible sites of ATP synthesis are discussed.  相似文献   

5.
Acetobacterium woodii is known to produce mainly acetate from CO2 and H2, but the production of higher value chemicals is desired for the bioeconomy. Using chain-elongating bacteria, synthetic co-cultures have the potential to produce longer-chained products such as caproic acid. In this study, we present first results for a successful autotrophic co-cultivation of A. woodii mutants and a Clostridium drakei wild-type strain in a stirred-tank bioreactor for the production of caproic acid from CO2 and H2 via the intermediate lactic acid. For autotrophic lactate production, a recombinant A. woodii strain with a deleted Lct-dehydrogenase complex, which is encoded by the lctBCD genes, and an inserted D-lactate dehydrogenase (LdhD) originating from Leuconostoc mesenteroides, was used. Hydrogen for the process was supplied using an All-in-One electrode for in situ water electrolysis. Lactate concentrations as high as 0.5 g L–1 were achieved with the AiO-electrode, whereas 8.1 g L–1 lactate were produced with direct H2 sparging in a stirred-tank bioreactor. Hydrogen limitation was identified in the AiO process. However, with cathode surface area enlargement or numbering-up of the electrode and on-demand hydrogen generation, this process has great potential for a true carbon-negative production of value chemicals from CO2.  相似文献   

6.
Three strains of strictly anaerobic Gram-negative, non-sporeforming, motile bacteria were enriched and isolated from freshwater sediments with 1,3-propanediol as sole energy and carbon source. Strain OttPdl was a sulfate-reducing bacterium which grew also with lactate, ethanol, propanol, butanol, 1,4-butanediol, formate or hydrogen plus CO2, the latter only in the presence of acetate. In the absence of sulfate, most of these substrates were fermented to the respective fatty acids in syntrophic cooperation with Methanospirillum hungatei. Sulfur, thiosulfate, or sulfite were reduced, nitrate not. The other two isolates degraded propanediol only in coculture with Methanospirillum hungatei. Strain OttGlycl grew in pure culture with acetoin and with glycerol in the presence of acetate. Strain WoAcl grew in pure culture only with acetoin. Both strains did not grow with other substrates, and did not reduce nitrate, sulfate, sulfur, thiosulfate or sulfite. The isolates were affiliated with the genera Desulfovibrio and Pelobacter. The pathways of propanediol degradation and the ecological importance of this process are discussed.  相似文献   

7.
Summary The influence of culture pH on the metabolism of Gluconobacter oxydans was determined. An acidic milieu during growth of the organism enhances the oxidation rate. The CO2 evolution rate representing the assimilation of the product is inhibited by a low pH value. Growth of the bacteria is possible both on glycerol and DHA in separate phases, which is not a controlled as diauxic growth. Product formation follows Luedeking-Piret kinetics.now: Institut für Biotechnologie, TU Graz, Petersgasse 12, 8010 Graz, Austria  相似文献   

8.
Acetogenic bacteria such as Acetobacterium woodii use the Wood–Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2. Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate-specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760-Awo_c22740) as the methanol-specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron source and the respiratory Rnf complex is required for redox homeostasis if methanol + CO2 is the substrate. Resting cells fed with methanol + CO2, indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities.  相似文献   

9.
Methanosarcina barkeri (strain MS) grew and converted acetate to CO2 and methane after an adaption period of 20 days. Growth and metabolism were rapid with gas production being comparable to that of cells grown on H2 and CO2. After an intermediary growth cycle under a H2 and CO2 atmosphere acetateadapted cells were capable of growth on acetate with formation of methane and CO2. When acetate-adapted Methanosarcina barkeri was co-cultered with Acetobacterium woodii on fructose or glucose as substrate, a complete conversion of the carbohydrate to gases (CO2 and CH4) was observed.Abbreviation CMC carboxymethyl cellulose  相似文献   

10.

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.

  相似文献   

11.
Four strains of new homoacetogenic bacteria were enriched and isolated from freshwater sediments and sludge with ethanol, propanol, 1,2-propanediol, or 1,2-butanediol as substrates. All strains were Gram-positive nonsporeforming rods and grew well in carbonate-buffered defined media under obligately anaerobic conditions. Optimal growth occurred at 27° C around pH 7.0. H2/CO2, primary aliphatic alcohols C3–C5, glucose, fructose, lactate, pyruvate, ethylene glycol, 1,2-propanediol, 2,3-butanediol, acetoin, glycerol, and methyl groups of methoxylated benzoate derivates and betaine were fermented to acetate or, in case of primary alcohols C3–C5 and 1,2-propanediol, to acetate and the respective fatty acid. In coculture with methanogens methane was formed, probably due to interspecies hydrogen transfer. Strain WoProp 1 is described as a new species, Acetobacterium carbinolicum. It had a DNA base composition of 38.5±1.0% guanine plus cytosine, and contained murein of crosslinkage type B similar to A. woodii.  相似文献   

12.
The homoacetogenic bacteria Acetobacterium woodii, A. carbinolicum, Sporomusa ovata, and Eubacterium limosum, the methanogenic archaeon Methanobacterium formicicum, and the sulfate-reducing bacterium Desulfotomaculum orientis all produced formate as an intermediate when they were growing chemolithoautotrophically with H2 and CO2 as sources of energy, electrons, and carbon. The sulfate-reducing bacterium Desulfovibrio vulgaris grew chemolithoheterotrophically with H2 and CO2 using acetate as carbon source, but also produced formate when growth was limited by sulfate. All these bacteria were also able to grow on formate as energy source. Formate accumulated transiently while H2 was consumed. The maximum formate concentrations measured in cultures of A. woodii and A. carbinolicum were proportional to the initial H2 partial pressure, giving a ratio of about 0.5 mM formate per 10 kPa H2. The methanogen Methanobacterium bryantii, on the other hand, was unable to grow on formate and did not produce formate during chemolithoautotrophic growth on H2. The results indicate that the ability to utilize formate, that is, to possess a formate dehydrogenase, was the precondition for the production of formate during chemolithotrophic growth on H2. Received: 24 November 1998 / Accepted: 30 December 1998  相似文献   

13.
During growth of Acetobacterium woodii on fructose, glucose or lactate in a medium containing less than 0.04% bicarbonate, molecular hydrogen was evolved up to 0.1 mol per mol of substrate. Under an H2-atmosphere growth of A. woodii with organic substrates was completely inhibited whereas under an H2/CO2-atmosphere rapid growth occurred. Under these conditions H2+CO2 and the organic substrate were utilized simultaneously indicating that A. woodii was able to grow mixotrophically. Clostridium aceticum differed from A. woodii in that H2 was only evolved in the stationary phase, that the inhibition by H2 was observed at pH 8.5 but not at pH 7.5, anf that in the presence of fructose and H2+CO2 only fructose was utilized.The hydrogenase activity of fructose-grown cells of C. aceticum amounted to only 12% of that of H2+CO2-grown cells. With A. woodii a corresponding decrease of the activity of this enzyme was not observed.  相似文献   

14.
The strict anaerobe Desulfuromonas acetoxidans can oxidize acetate to CO2 with elemental sulfur as electron acceptor. 14C-labelling experiments and enzyme studies are described revealing that acetate oxidation proceeds via the citric acid cycle with the synthesis of oxaloacetate from acetate and 2 CO2 via pyruvate as anaplerotic reaction. An oxidation of acetate via one carbon unit intermediates as proposed for anaerobic bacteria fermenting acetate to 2 CO2 and 4 H2 was excluded.Dedicated to Professor Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

15.
16.
An obligately anaerobic, rod-shaped bacterium was isolated on alanine in co-culture with H2-scavenging Desulfovibrio and obtained in pure culture with glycine as sole fermentation substrate. The isolated strain, al-2, was motile by a polar to subpolar flagellum and stained Gram-positive. The guanine plus cytosine content of the DNA was 44.0 mol%. Strain al-2 grew in defined, reduced glycine media supplemented with biotin. The pure culture fermented 4 mol glycine to 3 mol acetate, 4 mol ammonia and 2 mol CO2. Under optimum conditions (34°C, pH 7.3), the doubling time on glycine was 60 min and the molar growth yield 7.6 g cell dry mass. Serine was fermented to acetate, ethanol, CO2, H2 and ammonia. In addition, betaine, sarcosine or creatine served as substrates for growth and acetate production if H2, formate or e.g. valine were added as H-donors. In pure culture on alanine under N2, strain al-2 grew very poorly and produced H2 up to a partial pressure of 3.6 kPa (0.035 atm). Desulfovibrio species, Methanospirillum hungatei and Acetobacterium woodii served as H2-scavengers that allowed good syntrophic growth on alanine. The co-cultures also grew on aspartate, leucine, valine or malate. Alanine and aspartate were stoichiometrically degraded to acetate and ammonia, whereas the reducing equivalents were recovered as H2S, CH4 or newly synthetized acetate, respectively. Growth of strain al-2 in co-culture with the hydrogenase-negative, formate-utilizing Desulfovibrio baarsii indicated that a syntrophy was also possible by interspecies formate transfer. Growth on glycine, or on betaine, sarcosine or creatine (plus H-donors) depended strictly on the addition of selenite (0.1 M); selenite was not required for fermentation of serine, or for degradation of alanine, aspartate or valine by the co-cultures. Cell-free extracts of glycine-grown cells contained active glycine reductase, glycine decarboxylase and reversible methyl viologen-dependent formate dehydrogenase in addition to the other enzymes necessary for an oxidation to CO2. In all reactions NADP was the preferred H-carrier. Both formate and glycine could be synthesized from bicarbonate. Serine-grown cells did not contain serine hydroxymethyl transferase but serine dehydratase and other enzymes commonly involved in pyruvate metabolism to acetate, CO2 and H2. The enzymes involved in glycine metabolism were repressed during growth on serine. By its morphology and physiology, strain al-2 did not resemble described amino acid-degrading species. Therefore, the new isolate is proposed as type strain of a new species, Eubacterium acidaminophilum.  相似文献   

17.
Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.  相似文献   

18.
Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD. NADH is reoxidized by reducing propionaldehyde to propanol. The potential gene cluster coding for the responsible enzymes includes genes coding for shell proteins of bacterial microcompartments. Electron microscopy revealed the presence of microcompartments as well as storage granules in cells grown on 1,2-PD. Gene clusters coding for the 1,2-PD pathway can be found in other acetogens as well, but the distribution shows no relation to the phylogeny of the organisms.  相似文献   

19.
The conversion of glycerol into high value products, such as hydrogen gas and 1,3‐propanediol (PD), was examined using anaerobic fermentation with heat‐treated mixed cultures. Glycerol fermentation produced 0.28 mol‐H2/mol‐glycerol (72 mL‐H2/g‐COD) and 0.69 mol‐PD/mol‐glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol‐H2/mol‐glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol‐H2/mol‐glycerol (43 mL H2/g‐COD) and 0.59 mol‐PD/mol‐glycerol. These are the highest yields yet reported for both hydrogen and 1,3‐propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3‐propanediol for maximum utilization of resources and minimization of waste. Biotechnol. Bioeng. 2009; 104: 1098–1106. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号