首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After reviewing antiviral drugs (Brüssow Environmental Microbiology 2021) the present review summarizes the results of clinical trials with host-modifying drugs in COVID-19 patients. Clinical benefits were observed with different immunomodulators. The variable outcomes of trials with the interleukin 6 receptor inhibitor tocilizumab demonstrated that treatment benefits might only be present in specific subgroups of patients or in specific infection stages. A meta-analysis of trials with the interleukin 1 receptor antagonist anakinra showed a survival benefit only in patients with hyperinflammation. The Janus kinase inhibitor baricitinib is an anti-inflammatory treatment that showed a clinical benefit in hospitalized patients who do not yet need supplementary oxygen. In contrast, the corticosteroid dexamethasone showed mortality reducing effects that were limited to patients on ventilation or in need of supplementary oxygen. Therapeutic dose of anticoagulation met the criteria for inferiority in severe cases, but showed a small survival benefit in non-severe COVID-19 patients. Large trials with colchicine showed a small or no survival benefit. Azithromycin, an antibiotic with immunomodulatory activity, showed no effects in numerous clinical trials. The trials showed a clear need for new drugs instead of repurposed drugs and drugs that specifically target the SARS-CoV-2 virus or the pathology developing in COVID-19 patients.  相似文献   

2.
COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.  相似文献   

3.
新型冠状病毒肺炎(2019 novel coronavirus disease,COVID-19),一种由动物来源的新型冠状病毒(severe acute respiratory syndrome coronavirus 2,SRAS-CoV-2)感染所致的疾病在全球范围内急速传播,严重的危害人类的健康.快速、准确的诊...  相似文献   

4.

In response to the COVID-19 pandemic, and the lack of effective and safe antivirals against it, we adopted a new approach in which food supplements with vital antiviral characteristics, low toxicity, and fast excretion have been targeted. The structures and chemical properties of the food supplements were compared to the promising antivirals against SARS-COV-2. Our goal was to exploit the food supplements to mimic the topical antivirals’ functions but circumventing their severe side effects, which has limited the necessary dosage needed to exhibit the desired antiviral activity. On this line, after a comparative structural analysis of the chemicals mentioned above, and investigation of their potential mechanisms of action, we selected caffeine and some compounds of the vitamin B family and further applied molecular modeling techniques to evaluate their interactions with the RDB domain of the Spike protein of SARS-CoV-2 (SC2Spike) and its corresponding binding site on human ACE-2 (HssACE2). Our results pointed to vitamins B1 and B6 in the neutral form as potential binders to the HssACE2 RDB binding pocket that might be able to impair the SARS-CoV-2 mechanism of cell invasion, qualifying as potential leads for experimental investigation against COVID-19.

  相似文献   

5.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

6.
BackgroundDevelopment of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials.Methods and findingsA modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d−1 (95% CI: 1.06 to 1.27 d−1), 0.777 d−1 (0.716 to 0.838 d−1), and 0.450 d−1 (0.378 to 0.522 d−1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies).Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome.We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation.ConclusionsIn this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.

Using a viral dynamics model, Shingo Iwami and colleagues investigate the sample sizes required to detect significant antiviral drug effects on COVID-19 in randomized controlled trials.  相似文献   

7.
干扰素是机体抗病毒的第一道天然防线,干扰素α1b是中国人干扰素家族中主要的抗病毒表达亚型。SARS-CoV-2通过多种途径抑制先天免疫关键分子干扰素的产生。已上市多年的重组人干扰素α1b显示出强大的体外抗SARS-CoV-2病毒活性。初步临床研究显示,包括重组人干扰素α1b在内的I型干扰素对COVID-19显示出积极的治疗和预防作用。全球多个国家正在开展干扰素治疗COVID-19的临床试验,我国自主知识产权的重组人干扰素α1b率先开展了验证性临床试验。  相似文献   

8.
COVID-19 is a viral infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that killed a large number of patients around the world. A hyperinflammatory state resulting in a cytokine storm and adult respiratory distress syndrome seems to be the major cause of the death. Many mechanisms have been suggested in the pathogenesis of COVID-19 associated cytokine storm (COVID-CS). Insufficient viral clearance and persistence of a strong cytokine response despite inadequate antiviral immunity seem to be the main mechanisms underlying the pathogenesis. The diagnosis of COVID-19 is based on relatively constant clinical symptoms, clinical findings, laboratory tests, and imaging techniques, while the diagnosis of COVID-CS is a rather dynamic process, based on evolving or newly emerging findings during the clinical course. Management of COVID-19 consists of using antiviral agents to inhibit SARS-CoV-2 replication and treating potential complications including the cytokine storm together with general supportive measures. COVID-CS may be treated using appropriate immunosuppressive and immunomodulatory drugs that reduce the level of inappropriate systemic inflammation, which has the potential to cause organ damage. Currently corticosteroids, IL-6 blockers, or IL-1 blockers are most widely used for treating COVID-CS.  相似文献   

9.
Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.  相似文献   

10.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.  相似文献   

11.
Novel 2019 coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and coronavirus disease 2019 (COVID-19), the respiratory syndrome it causes, have shaken the world to its core by infecting and claiming the lives of many people since originating in December 2019 in Wuhan, China. World Health Organization and several states have declared a pandemic situation and state of emergency, respectively. As there is no treatment for COVID-19, several research institutes and pharmaceutical companies are racing to find a cure. Advances in computational approaches have allowed the screening of massive antiviral compound libraries to identify those that may potentially work against SARS-CoV-2. Antiviral agents developed in the past to combat other viruses are being repurposed. At the same time, new vaccine candidates are being developed and tested in preclinical/clinical settings. This review provides a detailed overview of select repurposed drugs, their mechanism of action, associated toxicities, and major clinical trials involving these agents.  相似文献   

12.
Coronavirus disease 2019 (COVID-19) first emerged in late 2019 in China. At the time of writing, its causative agent SARS-CoV-2 has spread worldwide infecting over 9 million individuals and causing more than 460,000 deaths. In the absence of vaccines, we are facing the dramatic challenge of controlling COVID-19 pandemic. Among currently available drugs, type I Interferons (IFN-I) – mainly IFN-α and β –represent ideal candidates given their direct and immune-mediated antiviral effects and the long record of clinical use. However, the best modalities of using these cytokines in SARS-CoV-2 infected patients is a matter of debate. Here, we discuss how we can exploit the current knowledge on IFN-I system to tailor the most promising dosing, timing and route of administration of IFN-I to the disease stage, with the final aim of making these cytokines a valuable therapeutic strategy in today's fight against COVID-19 pandemic.  相似文献   

13.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued evolving for survival and adaptation by mutating itself into different variants of concern, including omicron. Several studies and clinical trials found fluvoxamine, an Food and Drug Administration-approved antidepressant drug, to be effective at preventing mild coronavirus disease 2019 (COVID-19) from progressing to severe diseases. However, the mechanism of fluvoxamine's direct antiviral action against COVID-19 is still unknown. Fluvoxamine was docked with 11 SARS-CoV-2 targets and subjected to stability, conformational changes, and binding free energy analyses to explore its mode of action. Of the targets, nonstructural protein 14 (NSP14), main protease (Mpro), and papain-like protease (PLpro) had the best docking scores with fluvoxamine. Consistent with the docking results, it was confirmed by molecular dynamics simulations that the NSP14 N7-MTase ((N7-guanine)-methyltransferase)–fluvoxamine, Mpro–fluvoxamine, and PLpro–fluvoxamine complexes are stable, with the lowest binding free energies of −105.1, −82.7, and − 38.5 kJ/mol, respectively. A number of hotspot residues involved in the interaction were also identified. These include Glu166, Asp187, His41, and Cys145 in Mpro, Gly163 and Arg166 in PLpro, and Glu302, Gly333, and Phe426 in NSP14, which could aid in the development of better antivirals against SARS-CoV-2.  相似文献   

14.
随着新型冠状病毒肺炎(COVID-19)疫情在全球的不断蔓延,开发有效的治疗药物迫在眉睫。中和抗体作为最有希望的新型冠状病毒特异性治疗药物,已经在临床研究中展现很好的治疗效果。对抗新冠病毒单克隆中和抗体药物研发的进展、涉及的主要技术和主要临床试验结果进行了总结,以期为包括COVID-19在内的新发、突发传染病中和抗体药物研发提供参考。  相似文献   

15.
This paper aimed to analyze antibody responses to SARS-CoV-2 in various populations. Two hundred and six COVID-19 patients, 46 convalescent patients, and 270 healthy population were enrolled. Antibodies against nucleocapsid protein (N) and spike protein''s receptor-binding domain (RBD), and neutralizing antibody were detected. The results demonstrated both anti-N and anti-RBD antibodies could be detected in about 80% of COVID-19 patients and 90% of convalescent patients, while no antibodies could be detected in some convalescents and patients even after 14 days post-onset of symptoms. The level of anti-RBD antibody strongly correlated with the neutralizing activity of sera from these two cohorts. The titer of neutralizing antibody was lower in convalescents than that in active COVID-19 patients. In addition, the titer of neutralizing antibody was less than 1:80 in none of the severe COVID-19 patients, 18.8% in non-severe COVID-19 patients, and 32.6% in convalescents. The study suggests that the level of anti-RBD antibody is closely related to neutralization activity in COVID-19 patients and convalescents. Some SARS-CoV-2-infected cases trigger a weak antiviral immune response, and the level of neutralizing antibody may have a faster decay rate.  相似文献   

16.
The world urgently needs effective antiviral approaches against emerging viruses, as shown by the coronavirus disease 2019 (COVID-19) pandemic, which has become an exponentially growing health crisis. Scientists from diverse backgrounds have directed their efforts towards identifying key features of SARS-CoV-2 and clinical manifestations of COVID-19 infection. Reports of more transmissible variants of SARS-CoV-2 also raise concerns over the possibility of an explosive trajectory of the pandemic, so scientific attention should focus on developing new weapons to help win the fight against coronaviruses that may undergo further mutations in the future. Drosophila melanogaster offers a powerful and potential in vivo model that can significantly increase the efficiency of drug screening for viral and bacterial infections. Thanks to its genes with functional human homologs, Drosophila could play a significant role in such gene-editing studies geared towards designing vaccines and antiviral drugs for COVID-19. It can also help rectify current drawbacks of CRISPR-based therapeutics like off-target effects and delivery issues, representing another momentous step forward in healthcare. Here I present an overview of recent literature and the current state of knowledge, explaining how it can open up new avenues for Drosophila in our battle against infectious diseases.  相似文献   

17.
A new coronavirus(SARS-CoV-2)has been identified as the etiologic agent for the COVID-19 outbreak.Currently,effective treatment options remain very limited for this disease;therefore,there is an urgent need to identify new anti-COVID-19 agents.In this study,we screened over 6,000 compounds that included approved drugs,drug candidates in clinical trials,and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease(PLpro).Together with main protease(Mpro),PLpro is responsible for processing the viral replicase polyprotein into functional units.There-fore,it is an attractive target for antiviral drug develop-ment.Here we discovered four compounds,YM155,cryptotanshinone,tanshinone I and GRL0617 that inhibit SARS-CoV-2 PLpro with IC50 values ranging from 1.39 to 5.63 pmol/L.These compounds also exhibit strong antiviral activities in cell-based assays.YM155,an anti-cancer drug candidate in clinical trials,has the most potent antiviral activity with an EC50 value of 170 nmol/L.In addition,we have determined the crystal structures of this enzyme and its complex with YM155,revealing a unique binding mode.YM155 simultaneously targets three"hot"spots on PLpro,including the substrate-binding pocket,the interferon stimulating gene product 15(ISG15)binding site and zinc finger motif.Our results demonstrate the efficacy of this screening and repur-posing strategy,which has led to the discovery of new drug leads with clinical potential for COVID-19 treatments.  相似文献   

18.
19.
In view of devastating effects of COVID-19 on human life, there is an urgent need for the licened vaccines or therapeutics for the SARS-CoV-2 infection. Age-old passive immunization with protective antibodies to neutralize the virus is one of the strategies for emergency prophylaxis and therapy for coronavirus disease 2019 (COVID-19). In this review, the authors discuss up-to-date advances in immune-based therapy for COVID-19. The use of convalescent plasma therapy as the first line of defense to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been established, with encouraging results. Monoclonal antibodies (mAbs) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein or block the interaction between SARS-CoV-2 RBD and the human angiotensin-converting enzyme 2 receptor have been found to be very promising as a countermeasure for tackling the SARS-CoV-2 infection, and clinical trials are underway. Considering the counterproductive antibody-dependent enhancement of the virus, mAbs therapy that is safe and efficacious, even in people with underlying conditions, will be a significant breakthrough. In addition, emerging immunotherapeutic interventions using nanobodies and cellular immunotherapy are promising avenues for tackling the COVID-19 pandemic. The authors also discuss the implication of mAbs as mediators of cytokine storm syndrome to modify the immune response of COVID-19 patients, thus reducing the fatality rate of COVID-19 infection.  相似文献   

20.
The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients’ immunity, achieved directly through the exogenous administration of IFN-β early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-β and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号