首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some geminiviruses encode a small protein, AC4, whose role in pathogenesis has only recently attracted attention. A few studies have shown that this protein is involved in pathogenesis and suppresses RNA silencing. Here, using Nicotiana benthamiana, we show that East African cassava mosaic Cameroon virus (EACMCV) AC4 is a pathogenicity determinant and that it suppresses the systemic phase of RNA silencing. Furthermore, confocal imaging analyses show that it binds preferentially to the plasma membrane as well as to cytosolic membranes including the perinucleus but is excluded from the nucleus. A computational examination of the AC4 protein encoded by the EACMCV, a bipartite geminivirus, shows that it encodes a consensus N-myristoylation motif and is likely posttranslationally myristoylated and palmitoylated. Replacement of Gly-2 and Cys-3 (sites of posttranslational attachment of myristic and palmatic acids, respectively) with alanine affected AC4 membrane binding and pathogenesis. Furthermore, replacement of Ile-5, a nonessential myristoylation residue, with alanine did not affect AC4 function. Together, these data indicate that EACMCV AC4 is likely dually acylated at Gly-2 and Cys-3 and that these modifications are intrinsic signals for membrane targeting and pathogenesis. This is the first report of a membrane protein to be involved in pathogenesis and RNA silencing suppression.  相似文献   

2.
3.
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.  相似文献   

4.
Despite increasing evidence for the existence of antigen-specific regulatory T cells, the mechanisms underlying suppression remain unclear. In this study we have identified and cloned a novel subset of antigen-specific regulatory T cells and demonstrated that these T cells possess a unique combination of cell surface markers and array of cytokines. The regulatory T cells are able to inhibit the function of T cells carrying the same T-cell receptor specificity and prevent skin allograft rejection in an antigen-specific, dose-dependent manner. The regulatory T cells are able to acquire alloantigen from antigen-presenting cells, present the alloantigen to activated syngeneic CD8+ T cells and then send death signals to CD8+ T cells. These findings provide a novel mechanism of regulatory T-cell-mediated, antigen-specific suppression.  相似文献   

5.
《Fungal biology》2020,124(3-4):164-173
The cAMP signaling pathway has been shown to be important in controlling morphological changes and pathogenicity in plant pathogens. In the present study, we identified PcPdeH, a gene encoding a high-affinity phosphodiesterase (PDE), which is a key regulator of the cAMP signaling pathway. To elucidate the function of PcPdeH, PcPdeH-knockout mutants were obtained using a type II CRISPR/Cas9 system in Phytophthora capsici. The knockout transformants of PcPdeH showed vegetative growth defects and abnormal cyst germination. Infection assays indicated that compared with the wild type, PcPdeH-knockout mutants showed significantly reduced virulence on pepper and tobacco leaves and exhibited increased (1.5-2-fold) cAMP levels relative to the wild-type and CK strains. Based on these phenotypic features, we propose that PcPdeH is crucial for vegetative growth, cyst germination and pathogenicity in P. capsici.  相似文献   

6.
Goodpasture antigen, the non‐collagenous domain of α3 chain of type IV collagen [α3(IV)NC1], is the target antigen of anti‐glomerular basement membrane (GBM) antibodies. The pathogenicity of T cell epitopes is not elucidated clearly. In this study, we aim to define the nephritogenic T cell epitopes and its critical amino acid residues. Twenty‐four overlapping linear peptides were synthesized covering the whole sequence of human α3(IV)NC1. Wistar–Kyoto rats were immunized with linear peptides, and experimental autoimmune glomerulonephritis was evaluated. Critical amino acid was identified by the loss of nephritogenic function after each amino acid substitution by alanine. Of the 24 peptides, P14 (α3127‐148) could induce 90.5% (19/21) of WKY rats developing anti‐GBM glomerulonephritis with proteinuria, elevated serum urea and creatinine, IgG linear deposit on GBM and substantial (in average 82.4 ± 5.6%) crescent formation in glomeruli. Lymphocytes of immunized rats proliferated in response to α3127‐148 and α3(IV)NC1 in vitro. Sera of these rats recognized α3127‐148 and later on together with intact human α3(IV)NC1. Antibodies towards α3127‐148 and intact α3(IV)NC1 could also be detected from the kidney elutes. These antibodies showed no cross‐reaction with each other, which implies intramolecular epitope spreading during disease progress. After sequential amino acid substitution, the α3127‐148 with substitution of tryptophan136, isoleucine137, leucine139 or tryptophan140 lost its nephritogenicity. Human α3127‐148 is a nephritogenic T cell epitope in WKY rats, with the critical amino acids as W136I137xL139W140. These findings might facilitate future investigation on microbial aetiology and potential specific immunotherapy of anti‐GBM disease.  相似文献   

7.
Leishmania parasites are responsible for a diverse collection of diseases of humans and other animals. Cysteine proteases are putative virulence factors of leishmania parasites. There are differences in the susceptibility of specific stages in different Leishmania species to cysteine protease inhibitors. Here, we establish a key role of cysteine proteases in growth, viability, and pathogenicity of Leishmania tropica by using a specific cysteine protease inhibitor (N-Pip-F-hF-VS Phenyl). Reduction or arrest of promastigote growth occurred at inhibitor concentration of 5 and 100 microM, respectively. This shows an essential role for cysteine proteases in viability and growth of L. tropica promastigotes. It confirms that the promastigote stage of L. tropica more closely resembles that of Leishmania major than that of Leishmania mexicana, which is refractory to this inhibitor. Pathogenicity of L. tropica amastigotes in mice, as assessed by footpad swelling, was also reduced by treatment with the cysteine protease inhibitor. This suggests that cysteine proteases are essential for pathogenicity of L. tropica amastigote in mammalian host, similar to both L. major and L. mexicana.  相似文献   

8.
The mechanisms by which antigenic peptides bearing a glycosylation site may be processed from viral glycoproteins, post-translationally modified, and presented by major histocompatibility complex class I molecules remain poorly understood. With the aim of exploring these processes, we have dissected the structural and functional properties of the MHC-restricted peptide GP92-101 (CSANNSHHYI) generated from the lymphocytic choriomeningitis virus (LCMV) GP1 glycoprotein. LCMV GP92-101 bears a glycosylation motif -NXS- that is naturally N-glycosylated in the mature viral glycoprotein, displays high affinity for H-2D(b) molecules, and elicits a CD8(+) cytotoxic T lymphocyte response. By analyzing the functional properties of natural and synthetic peptides and by identifying the viral sequence(s) from the pool of naturally occurring peptides, we demonstrated that multiple forms of LCMV GP92-101 were generated from the viral glycoprotein and co-presented at the surface of LCMV-infected cells. They corresponded to non-glycosylated and post-translationally modified sequences (conversion of Asn-95 to Asp or alteration of Cys-92). The glycosylated form, despite its potential immunogenicity, was not detected. These data illustrate that distinct, non-mutually exclusive antigen presentation pathways may occur simultaneously within a cell to generate structurally and functionally different peptides from a single genetically encoded sequence, thus contributing to increasing the diversity of the T cell repertoire.  相似文献   

9.
The biological significance of RBCC (N-terminal RING finger/B-box/coiled coil) proteins is increasingly being appreciated following demonstrated roles in disease pathogenesis, tumorigenesis, and retroviral protective activity. Found in all multicellular eukaryotes, RBCC proteins are involved in a vast array of intracellular functions; but as a general rule, they appear to function as part of large protein complexes and possess ubiquitin-protein isopeptide ligase activity. Those members characterized to date have diverse C-terminal domain compositions and equally diverse subcellular localizations and functions. Using a bioinformatics approach, we have identified some new RBCC proteins that help define a subfamily that shares an identical domain arrangement (MID1, MID2, TRIM9, TNL, TRIM36, and TRIFIC). Significantly, we show that all analyzed members of this subfamily associate with the microtubule cytoskeleton, suggesting that subcellular compartmentalization is determined by the unique domain architecture, which may in turn reflect basic functional similarities. We also report a new motif called the COS box, which is found within these proteins, the MURF family, and a distantly related non-RBCC microtubule-binding protein. Notably, we demonstrate that mutations in the COS box abolish microtubule binding ability, whereas its incorporation into a nonmicrotubule-binding RBCC protein redirects it to microtubule structures. Further bioinformatics investigation permitted subclassification of the entire human RBCC complement into nine subfamilies based on their varied C-terminal domain compositions. This classification schema may aid the understanding of the molecular function of members of each subgroup and their potential involvement in both basic cellular processes and human disease.  相似文献   

10.
The defective murine AIDS (MAIDS) virus has unique sequences in its p15gag and p12gag regions. To clarify whether these sequences are responsible for the development of MAIDS, we constructed recombinant viruses by replacing various regions of the gag gene of the nonpathogenic replication-competent LP-BM5 ecotropic virus with those of the MAIDS virus. Recombinants containing both unique sequences of the MAIDS virus were replication defective and induced MAIDS. However, a recombinant containing either the p15gag or p12gag region of the MAIDS virus was also replication defective but nonpathogenic in mice. A recombinant virus containing only the p30gag region of the MAIDS virus was replication competent and nonpathogenic. These results indicate that the p15gag and p12gag regions of the MAIDS virus do not function like those of replication-competent viruses and that both of the unique sequences in the p15gag and p12gag regions are required to develop MAIDS.  相似文献   

11.
12.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (ΔKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the ΔKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-ΔKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Δpnp mutation at 18 °C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   

13.
14.
Magnaporthe oryzae causes blast disease, which is one of the most devastating infections in rice and several important cereal crops. Magnaporthe oryzae needs to coordinate gene regulation, morphological changes, nutrient acquisition and host evasion in order to invade and proliferate within the plant tissues. Thus far, the molecular mechanisms underlying the regulation of invasive growth in planta have remained largely unknown. We identified a precise filamentous-punctate-filamentous cycle in mitochondrial morphology during Magnaporthe–rice interaction. Interestingly, disruption of such mitochondrial dynamics by deletion of genes regulating either the mitochondrial fusion (MoFzo1) or fission (MoDnm1) machinery, or inhibition of mitochondrial fission using Mdivi-1 caused significant reduction in M. oryzae pathogenicity. Furthermore, exogenous carbon source(s) but not antioxidant treatment delayed such mitochondrial dynamics/transition during invasive growth. In contrast, carbon starvation induced the breakdown of the mitochondrial network and led to more punctate mitochondria in vitro. Such nutrient-based regulation of organellar dynamics preceded MoAtg24-mediated mitophagy, which was found to be essential for proper biotrophic development and invasive growth in planta. We propose that precise mitochondrial dynamics and mitophagy occur during the transition from biotrophy to necrotrophy and are required for proper induction and establishment of the blast disease in rice.  相似文献   

15.
Supernatants of murine lymphoid cultures stimulated with Concanavalin A contain factor(s) capable of sustaining continuous growth of murine lymphoid cells in vitro. Methods for the optimal generation of these growth factors (GM) have been defined, including number of cells required, optimal concentration of Concanavalin A, incubation time, and strain differences in GM production. With GM, cells have been grown for over 15 10-fold generations over a 2-month period. The growing cells express the theta surface marker and do not express surface Ia antigens.  相似文献   

16.
17.
Skeletal muscle undergoes active remodeling in response to endurance exercise training, and the underlying mechanisms of this remodeling remain to be defined fully. We have recently obtained evidence that voluntary running induces cell cycle gene expression and cell proliferation in mouse plantaris muscles that undergo fast-to-slow fiber-type switching and angiogenesis after long-term exercise. To ascertain the functional role of cell proliferation in skeletal muscle adaptation, we performed in vivo 5-bromo-2'-deoxyuridine (BrdU) pulse labeling (a single intraperitoneal injection), which demonstrated a phasic increase (5- to 10-fold) in BrdU-positive cells in plantaris muscle between days 3 and 14 during 4 wk of voluntary running. Daily intraperitoneal injection of BrdU for 4 wk labeled 2.0% and 15.4% of the nuclei in plantaris muscle in sedentary and trained mice, respectively, and revealed the myogenic and angiogenic fates of the majority of proliferative cells. Ablation of resident stem cell activity by X-ray irradiation did not prevent voluntary running-induced increases of type IIa myofibers and CD31-positive endothelial cells but completely blocked the increase in muscle mass. These findings suggest that resident stem cell proliferation is not required for exercise-induced type IIb-to-IIa fiber-type switching and angiogenesis but is required for activity-dependent muscle growth. The origin of the angiogenic cells in this physiological exercise model remains to be determined. endurance exercise; adaptation  相似文献   

18.
Among 1.041 clinical isolates (77 serovars) of Salmonella which had been derived from cases with acute enterocolitis, 601 (58%) contained one or more plasmids. Large serovar-specific plasmids were seen in 95 of 307 isolates (31%) of Salmonella typhimurium, in 34 of 34 isolates (100%) of Salmonella enteritidis and in 36 of 38 isolates (94.7%) of Salmonella braenderup: the sizes of which were 100, 60 and 106 kilobases (kb), respectively. In order to determine the role of these plasmids in pathogenicity for enterocolitis, the plasmids were eliminated from some strains of S. braenderup and S. typhimurium and the pathogenicity of the plasmid-less strains was compared with that of the parent strains by invasiveness to HeLa cells, fluid accumulation in the rabbit ligated ileal loop, lesion of mucosal tissue and the Sereny test. The virulence of all the plasmid-less strains was as strong as that of the plasmid-bearing strains in these pathogenicity assay systems. We therefore concluded that the 106-kb plasmid of S. braenderup and the 100-kb plasmid of S. typhimurium are not necessary for their pathogenicity in the experimental models: invasiveness to HeLa cells, fluid accumulation in the rabbit ligated ileal loop, and Sereny test.  相似文献   

19.
Chang TY  Tsai WJ  Chou CK  Chow NH  Leu TH  Liu HS 《Life sciences》2003,73(10):1265-1274
Ha-ras(Val 12) overexpression was positively correlated with colony formation by NIH/3T3 derivative "2-12" cells harboring an inducible Ha-ras(Val 12) transgene. The ras-farnesylation inhibitor, Lovastatin, completely suppressed colony formation at higher dosages. However, Ha-ras oncogene overexpression alone could not stimulate colony formation under serum-deprived conditions, suggesting that ras is required but not sufficient for supporting colony formation. Substituting cow colostrum (AC-2) for serum did not result in colony formation from 2-12 cells in soft agar, suggesting the colostrum lacked or contained insufficient amounts of factors that stimulate colony formation. Supplementation of AC-2-containing medium with growth factors, such as insulin-like growth factor-1 (IGF-1), partially restored the capability of anchorage-independent cell growth induced by Ha-ras overexpression. Consistently, antibodies specific for IGF-1 receptors only partially blocked colony formation from 2-12 cells. The data indicate that multiple factors, including IGF-1, are required for Ha-ras-dependent colony formation. Signal transduction studies revealed that, under Ha-ras overexpression conditions, IGF-1 utilizes phosphatidyl inositol 3-kinase and NF-kappaB to transduce colony formation-related signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号