首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.  相似文献   

2.
3.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.  相似文献   

4.
Pseudomonas entomophila is an entomopathogenic bacterium that, upon ingestion, kills Drosophila melanogaster as well as insects from different orders. The complete sequence of the 5.9-Mb genome was determined and compared to the sequenced genomes of four Pseudomonas species. P. entomophila possesses most of the catabolic genes of the closely related strain P. putida KT2440, revealing its metabolically versatile properties and its soil lifestyle. Several features that probably contribute to its entomopathogenic properties were disclosed. Unexpectedly for an animal pathogen, P. entomophila is devoid of a type III secretion system and associated toxins but rather relies on a number of potential virulence factors such as insecticidal toxins, proteases, putative hemolysins, hydrogen cyanide and novel secondary metabolites to infect and kill insects. Genome-wide random mutagenesis revealed the major role of the two-component system GacS/GacA that regulates most of the potential virulence factors identified.  相似文献   

5.
6.
The (R)-specific enoyl-CoA hydratase gene (phaJ(HS21)) from Pseudomonas chlororaphis HS21 was overexpressed in various Pseudomonas strains, alone and in combination with the polyhydroxyalkanoate synthase gene (phaC(HS21)), for the biosynthesis of polyhydroxyalkanoates (PHAs) of altered monomer composition. Recombinant Pseudomonas strains harboring phaC(HS21) and phaJ(HS21) generated saturated and unsaturated monomers of C12-C14 in their PHAs. In particular, the level of the 3-hydroxytetradecenoate monomer in recombinant P. chlororaphis HS21 increased by approximately 260%. PhaJ(HS21) is expected to be useful in the biosynthesis of PHAs consisting of unusual monomer units.  相似文献   

7.
8.
GGT 2.0: versatile software for visualization and analysis of genetic data   总被引:1,自引:0,他引:1  
Ever since its first release in 1999, the free software package for visualization of molecular marker data, graphical genotype (GGT), has been constantly adapted and improved. The GGT package was developed in a plant-breeding context and thus focuses on plant genetic data but was not intended to be limited to plants only. The current version has many options for genetic analysis of populations including diversity analyses and simple association studies. A second release of the GGT package, GGT 2.0 (available through http://www.plantbreeding.wur.nl), is therefore presented in this paper. An overview of existing and new features that are available within GGT 2.0, and a case study in which GGT 2.0 is applied to analyze an existing set of plant genetic data, are presented and discussed.  相似文献   

9.
The flagellin of Pseudomonas aeruginosa can be classified into two major types-a-type or b-type-which can be distinguished on the basis of molecular weight and reactivity with type-specific antisera. Flagellin from the a-type strain PAK was shown to be glycosylated with a heterogeneous O-linked glycan attached to Thr189 and Ser260. Here we show that b-type flagellin from strain PAO1 is also posttranslationally modified with an excess mass of up to 700 Da, which cannot be explained through phosphorylation. Two serine residues at positions 191 and 195 were found to be modified. Each site had a deoxyhexose to which is linked a unique modification of 209 Da containing a phosphate moiety. In comparison to strain PAK, which has an extensive flagellar glycosylation island of 14 genes in its genome, the equivalent locus in PAO1 comprises of only four genes. PCR analysis and sequence information suggested that there are few or no polymorphisms among the islands of the b-type strains. Mutations were made in each of the genes, PA1088 to PA1091, and the flagellin from these isogenic mutants was examined by mass spectrometry to determine whether they were involved in posttranslational modification of the type-b flagellin. While mutation of PA1088, PA1089, and PA1090 genes altered the composition of the flagellin glycan, only unmodified flagellin was produced by the PA1091 mutant strain. There were no changes in motility or lipopolysaccharide banding in the mutants, implying a role that is limited to glycosylation.  相似文献   

10.
11.
The opportunistic human pathogen Psuedomonas aeruginosa produces two lectins in close association with virulence factors: PA-IL adn PA-IIL, which bind to galactose- and fucose/mannose-containing glycoconjugates, respectively. We review here the structural aspects of these lectins relative to their putative roles in host recognition, cell surface adhesion and biofilm formation.  相似文献   

12.
The opportunistic pathogen Pseudomonas aeruginosa causes both acute and chronic airway infections. In a recent issue of Developmental Cell, Goodman et al. (2004) show that the RetS two-component gene regulatory module inversely controls expression of genes associated with acute and chronic infection.  相似文献   

13.
14.
Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo-overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations.  相似文献   

15.
A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.  相似文献   

16.
The charge conduction properties of DNA can be harnessed for monitoring the binding of a ligand to its receptor. Two classes of such DNA-based sensors (deoxyribosensors) have been described for the ligand adenosine, each generated by the functional coupling of an adenosine-specific DNA aptamer to a charge-conductive DNA path. Here, we report a systematic investigation of the extent to which the features of such ligand-specific deoxyribosensors can be made universal. We have exploited established rules for DNA helical stacking within three-way helical junctions to design and characterize the properties of deoxyribosensors specific for the amino acid derivative, argininamide. The biochemical detection methods described here should translate easily to direct and rapid measurements of changes in current flow using chip-based methods. The results presented here suggest general directions for the design and assembly of deoxyribosensors specific for any molecular ligand, and describe a novel methodology for investigating helical stacking within DNAs and RNAs of unknown tertiary folding, such as novel ribozymes and deoxyribozymes.  相似文献   

17.
T V Tso?  I A Kosheleva  A M Boronin 《Genetika》1986,22(11):2702-2712
The hybridization and restriction analysis of the plasmid pBS286 (73 Kb, the P-9 Inc group) as well as parental plasmids NPL-1, NPL-41 demonstrated that pBS286 plasmid (delta NPL-41::TnA) with the constitutive synthesis of naphthalene dioxygenase carried genes for naphthalene oxidation to salicylate and those participating in degradation of catechol. Restriction map of pBS286 using XhoI restriction endonuclease and that of the nah region using EcoRI, BamHI, SalI and XhoI were established. Structural peculiarities of nah genes from pBS286 are compared with previously described NAH7. Some nah genes were localized. An inverted DNA segment involved in nah gene regulation was shown to be closely linked to a proximal part of the nah1 operon or overlapped. Possible occurrence of a regulatory R locus in this region is suggested.  相似文献   

18.
Type IV pilin monomers assemble to form fibers called pili that are required for a variety of bacterial functions. Pilin monomers oligomerize due to the interaction of part of their hydrophobic N-terminal alpha-helix. Engineering of a truncated pilin from Pseudomonas aeruginosa strain K122-4, where the first 28 residues are removed from the N terminus, yields a soluble, monomeric protein. This truncated pilin is shown to bind to its receptor and to decrease morbidity and mortality in mice upon administration 15 min before challenge with a heterologous strain of Pseudomonas. The structure of this truncated pilin reveals an alpha-helix at the N terminus that lies across a 4-stranded antiparallel beta-sheet. A model for a pilus is proposed that takes into account both electrostatic and hydrophobic interactions of pilin subunits as well as previously published x-ray fiber diffraction data. Our model indicates that DNA or RNA cannot pass through the center of the pilus, however, the possibility exists for small organic molecules to pass through indicating a potential mechanism for signal transduction.  相似文献   

19.
Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural traits in 397 soybean accessions were characterized and a high‐density single nucleotide polymorphisms (SNPs)‐based genome‐wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter Class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, 3 significant SNPs in alanine‐glyoxalate aminotransferase, Leucine‐Rich Repeat receptor/No apical meristem, and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water‐limited and optimal field conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号