首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
蜜蜂肠道微生物群落研究进展   总被引:1,自引:0,他引:1  
李晨伊  周欣  郑浩 《微生物学报》2018,58(6):1016-1024
蜜蜂是重要的农业传粉昆虫,对全球农业及生态维护有着不可替代的作用。然而近年来美国、欧洲等地出现蜂群大量消失的迹象,给农业经济带来严重威胁。近年来人们逐渐发现蜂肠道微生物与维持宿主健康之间存在着联系,蜜蜂属(Apis)和熊蜂属(Bombus)个体都带有简单、特异的肠道菌群,并且蜂肠道菌群与人类等其他动物具有诸多相似之处,例如其通过社会性接触稳定传播的特性。本综述介绍了近年来通过体外培养、高通量测序等技术对蜂肠道微生物与宿主关系的研究,特别是其简化的菌群结构、宿主特异性,及其对蜜蜂食物消化、营养供给、病虫抵抗等方面的作用,并探讨了未来基于我国特有蜂种研究的方向,及蜜蜂作为优良的社会性动物模式体系对未来人类营养健康研究的可行性。  相似文献   

3.
4.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   

5.
A note: gut bacteria produce components of a locust cohesion pheromone   总被引:1,自引:0,他引:1  
AIMS: Faecal pellets from germ-free locusts were used as culture media to determine the ability of locust gut bacteria to synthesize phenolic components of the locust cohesion pheromone. METHODS AND RESULTS: Inoculation of germ-free faecal pellets with Pantoea agglomerans, a species commonly isolated from locusts, resulted in the release of large amounts of guaiacol and small amounts of phenol, both of which are components of the locust cohesion pheromone. Two other locust-derived species, Klebsiella pneumoniae pneumoniae and Enterobacter cloacae, also produced guaiacol from germ-free faecal pellets, but the opportunistic locust pathogen, Serratia marcescens, did not. The most likely precursor for guaiacol is the plant-derived vanillic acid, which is present in large amounts in the faeces of both conventional and germ-free locusts. CONCLUSIONS: These observations are consistent with previous ones, that locust gut bacteria are responsible for the production of components of the locust cohesion pheromone. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings illustrate how an insect can adapt to make use of a common bacterial metabolite produced by one or more of its indigenous gut bacterial species. This observation has implications for our appreciation of insect gut microbiota interactions.  相似文献   

6.
Many animals and plants have symbiotic relationships with beneficial bacteria. Experimentally tractable models are necessary to understand the processes involved in the selective transmission of symbiotic bacteria. One such model is the transmission of the insect-pathogenic bacterial symbionts Photorhabdus spp. by Heterorhabditis bacteriophora infective juvenile (IJ)-stage nematodes. By observing egg-laying behavior and IJ development, it was determined that IJs develop exclusively via intrauterine hatching and matricide (i.e., endotokia matricida). By transiently exposing nematodes to fluorescently labeled symbionts, it was determined that symbionts infect the maternal intestine as a biofilm and then invade and breach the rectal gland epithelium, becoming available to the IJ offspring developing in the pseudocoelom. Cell- and stage-specific infection occurs again in the pre-IJ pharyngeal intestinal valve cells, which helps symbionts to persist as IJs develop and move to a new host. Synchronous with nematode development are changes in symbiont and host behavior (e.g., adherence versus invasion). Thus, Photorhabdus symbionts are maternally transmitted by an elaborate infectious process involving multiple selective steps in order to achieve symbiont-specific transmission.  相似文献   

7.
The mammalian gut teems with microbes, yet how hosts acquire these symbionts remains poorly understood. Research in primates suggests that microbes can be picked up via social contact, but the role of social interactions in non-group-living species remains underexplored. Here, we use a passive tracking system to collect high resolution spatiotemporal activity data from wild mice (Apodemus sylvaticus). Social network analysis revealed social association strength to be the strongest predictor of microbiota similarity among individuals, controlling for factors including spatial proximity and kinship, which had far smaller or nonsignificant effects. This social effect was limited to interactions involving males (male-male and male-female), implicating sex-dependent behaviours as driving processes. Social network position also predicted microbiota richness, with well-connected individuals having the most diverse microbiotas. Overall, these findings suggest social contact provides a key transmission pathway for gut symbionts even in relatively asocial mammals, that strongly shapes the adult gut microbiota. This work underlines the potential for individuals to pick up beneficial symbionts as well as pathogens from social interactions.Subject terms: Microbial ecology, Zoology, Community ecology  相似文献   

8.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

9.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

10.
Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host''s “milk glands” or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, “Candidatus Arsenophonus melophagi,” we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, “Ca. Arsenophonus melophagi” is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands.  相似文献   

11.
Vertically transmitted symbionts can distort their host's reproduction to increase their own transmission. In Wolbachia and some other symbionts, a particular distortion of this sort is feminization, whereby genetic males, which cannot transmit symbionts, are converted during development into functional females, which do transmit symbionts when they reproduce. In this work, we propose a model to study how feminization intensity (i.e. penetrance) can evolve under different ecological constraints in WZ/ZZ hosts. More specifically, our model incorporates both imperfect vertical and horizontal transmission modes. The model shows that for most parameter values feminizing symbionts drive genetic females to extinction, which in turn favours the evolution of maximum feminization penetrance. Once genetic females are extinct, the actual value of feminization penetrance never depends on the efficiency of vertical transmission. Instead, the model shows that in conditions where the reproductive rate is high at demographic equilibrium, higher feminization levels are favoured. One consequence of this can be, for example, that evolutionarily stable feminization penetrance increases with the host's natural death rate, just as the virulence is predicted to do with the host's natural death rate in classic epidemiological models. Finally, we found that horizontal transmission had no impact on how feminization penetrance evolved when genetic females were extinct. However, horizontal transmission can permit genetic females to coexist with symbionts and, in this case, we demonstrate that the presence of genetic females selects symbionts for lower feminization penetrance.  相似文献   

12.
空间环境中的特殊因素会导致航天员肠道菌群及其代谢产物的失调,对机体会产生系统性的生理影响。本文综述了近年来太空飞行/模拟空间环境对肠道菌群及其代谢产物影响的研究进展。太空飞行/模拟空间环境(space flight/simulated space environment,SF/SPE)可导致侵袭性致病菌的增多及有益菌的减少,肠道炎症加剧与通透性增加,也会引起菌群的有益代谢物减少或有害代谢物增加,进而导致机体内代谢的紊乱,或可诱发其他系统的损伤,从而不利于航天员的健康与工作效率。总结太空飞行/模拟空间环境对肠道菌群产生的影响,可为该领域的后续研究与航天员的在轨健康防护提供科学依据。  相似文献   

13.
14.
Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.  相似文献   

15.
16.
Endosymbiotic gut bacteria play an essential role in the nutrition of many insects. Most of the nutritional interactions investigated so far involve gammaproteobacterial symbionts, whereas other groups have received comparatively little attention. Here, we report on the localization and the transmission route of the specific actinobacterial symbiont Coriobacterium glomerans from the gut of the red firebug, Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae ). The symbionts were detected by diagnostic PCRs and FISH in the midgut section M3, in the rectum and in feces of the bugs as well as in the hemolymph of some females. Furthermore, adult female bugs apply the symbionts to the surface of the eggs during oviposition, from where they are later taken up by the hatchlings. Surface sterilization of egg clutches generated aposymbiotic insects and thereby confirmed the vertical transmission route via the egg surface. However, symbionts were readily acquired horizontally when the nymphs were reared in the presence of symbiont-containing eggshells, feces, or adult bugs. Using diagnostic PCRs and partial sequencing of the 16S rRNA gene, closely related bacterial symbionts were detected in the cotton stainer bug Dysdercus fasciatus (Hemiptera: Pyrrhocoridae ), suggesting that the symbiosis with Actinobacteria may be widespread among pyrrhocorid bugs.  相似文献   

17.
18.
The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin‐supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ hybridization (FISH), we report on the protective role of the D. fasciatus gut bacteria against L. pyrrhocoris. We artificially infected 2nd instars of dysbiotic and symbiotic insects with a parasite culture and measured parasite titres, developmental time and survival rates. Our results show that L. pyrrhocoris infection increases developmental time and slightly modifies the quantitative composition of the gut microbiota. More importantly, we found significantly higher parasite titres and a tendency towards lower survival rates in parasite‐infected dysbiotic insects compared to symbiotic controls, indicating that the gut bacteria successfully interfere with the establishment or proliferation of L. pyrrhocoris. The colonization of symbiotic bacteria on the peritrophic matrix along the gut wall, as revealed by FISH, likely acts as a barrier blocking parasite attachment or entry into the hemolymph. Our findings show that in addition to being nutritionally important, D. fasciatus’ gut bacteria complement the host's immune system in preventing parasite invasions and that a stable gut microbial community is integral for the host's health.  相似文献   

19.
Many bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossina spp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined that Sodalis forms biofilms in the tsetse gut and that this process is influenced by the Sodalis outer membrane protein A (OmpA). Mutant Sodalis strains that do not produce OmpA (Sodalis ΔOmpA mutants) fail to form biofilms in vitro and are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms, Sodalis ΔOmpA mutant cells are exposed to and eliminated by tsetse''s innate immune system, suggesting that biofilms help Sodalis evade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promote Sodalis colonization of the tsetse gut may enhance the development of novel disease control strategies.  相似文献   

20.
王倩  刘玉升 《微生物学通报》2023,50(7):3137-3145
蝗虫自古以来是我国农林牧业的一大害虫,蝗虫聚集成灾对农业造成了巨大的损失,国内外学者也因此对其进行了深入的研究。随着科研工作者对昆虫肠道微生态学理论的逐渐重视,蝗虫的肠道微生物也成为了研究的重点,同时测序技术的迅速发展促进了蝗虫肠道微生物的研究。本文从蝗虫肠道菌群的多样性、功能及研究方法入手,对近年来蝗虫肠道微生物的研究进展进行总结,并对今后的研究进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号