首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Light and growth-promoting compounds, such as gibberellic acids (GA3), are among the most important factors that can break physiological seed dormancy. Here, we investigate the effects of GA3 and light on germination of five species of Resedaceae that are known to have different levels of physiological dormancy. Seeds were incubated at 20/30?°C in both 12-hr photoperiod and complete darkness. To study the effect of growth hormone on germination, seeds were soaked for 24?h in different concentrations of GA3 before sowing. The annuals (Reseda aucheri and Oligomeris linifolia) and the perennial Ochradenus arabicus had deep physiological dormancy, and exogenous application of GA3 enhanced their germination in the light, but not in darkness; few or no seeds germinated in the dark in these species. Ochradenus aucheri and O. baccatus had intermediate and non-deep dormancy, respectively, and application of GA3 enhanced their germination in both light and darkness. Germination of the annual species was much slower than that of the shrubby perennials. Overall, these results indicate that conditions under which seed developed, matured and stored on maternal plants as well as incubation conditions should be taken into consideration when assessing germination behavior of the perennial species of Resedaceae.  相似文献   

2.
Seed dormancy and germination characteristics are important factors determining plant reproductive success. In this study, we aimed to explore the characteristics of seed dormancy and germination of two endemic Labiatae species (Lamiophlomis rotata and Marmoritis complanatum) in the Himalaya–Hengduan Mountains. Germination was first tested in the light using freshly matured seeds at 25/15 and 15/5°C, and then again after dry after-ripening. Dried seeds were incubated in the light at a range of constant temperatures (1–35°C). The effects of dark and GA3 on germination were tested at several different temperatures. Base temperature (Tb) and thermal times for 50% final germination (θ50) were calculated. Seeds were also buried at the collection site to test seed persistence in the soil. Increased final germination after dry after-ripening indicated that the seeds of the two species exhibited non-deep physiological dormancy; however, they exhibited different germination characteristics and soil seed bank types. In L. rotata, GA3 only promoted germination at 5°C, producing no significant effect at other temperatures. Dark conditions decreased germination significantly at all temperatures. Tb and θ50 values were 0.6 and 82.7°C d. The soil seed bank of this species was classified as persistent. In M. complanatum, GA3 significantly promoted germination at all temperatures except 15°C. Dark conditions depressed germination significantly at warmer temperatures (20 and 25°C) but had no effect at lower temperatures. Tb and θ50 values were 0.1 and 92.3°C d. The soil seed bank was classified as transient. Our results suggest that the seed dormancy and germination of the two co-existing species share some commonalities but there are also species-specific adaptations to the harsh alpine environment.  相似文献   

3.
After‐ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after‐ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after‐ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after‐ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after‐ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after‐ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA1/ABA, GA7/ABA, GA12/ABA, GA20/ABA and IAA/ABA ratios significantly increased, while GA3/ABA, GA4/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after‐ripening, thereby altering α‐amylase activity during seed germination. Peak α‐amylase activity occurred at an earlier germination stage in after‐ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy‐related genes was regulated by after‐ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3‐2, qLTG3‐1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after‐ripening. Dormancy release through after‐ripening might be involved in weakening tissues covering the embryo via qLTG3‐1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1.  相似文献   

4.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

5.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

6.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

7.
We present a new seed dormancy classification scheme for the non‐deep level of the class physiological dormancy (PD), which contains six types. Non‐deep PD is divided into two sublevels: one for seeds that exhibit a dormancy continuum (types 1, 2 and 3) and the other for those that do not exhibit a dormancy continuum (types 4, 5 and 6). Analysis of previous studies showed that different types of non‐deep PD also can be identified using a graphical method. Seeds with a dormancy (D) ? conditional dormancy (CD) ? non‐dormancy (ND) cycle have a low germination percentage in the early stages of CD, and during dormancy loss the germination capacity increases. However, seeds with a CD/ND (i.e. D→CD?ND) cycle germinate to a high percentage at a narrow range of temperatures in the early stages of CD. Cardinal temperatures for seeds with either a D/ND or a CD/ND cycle change during dormancy loss: the ceiling temperature increases in seeds with Type 1, the base temperature decreases in seeds with Type 2 and the base and ceiling temperatures decrease and increase, respectively, in seeds with Type 3. Criteria for distinguishing the six types of non‐deep PD and models of the temperature functions of seeds with types 1, 2 and 3 with both types of dormancy cycles are presented. The relevancy of our results to modelling the timing of weed seedling emergence is briefly discussed.  相似文献   

8.
We investigated the germination requirements of the species Stachys germanica L. subsp. bithynica (Boiss.) Bhattacharjee (Lamiaceae). We studied the effects of scarification, short-time moist chilling (+4 °C) for 15 and 30 days, and various doses of gibberellic acid (GA3; 0, 100, 150 and 250 ppm), Kinetin (KIN; 50 ppm) and a combination of 250 ppm GA3 and 50 ppm KIN. The hormone and moist chilling treatments were carried out under both continuous darkness (20 °C) and photoperiodic (20/10 °C; 12/12 h, respectively) conditions. Seeds failed to germinate in response to short-time moist chilling treatments with distilled water under both continuous darkness and photoperiodic conditions. Seeds were found to have dormancy. Treatments with GA3 or a combination of GA3 and KIN were successful at breaking seed dormancy. A maximum of 37% of the seeds germinated after GA3 application in all series. When only KIN was applied at a 50 ppm concentration, germination (12%) was found only with moist chilling for 30 days under continuous darkness. The highest germination rates were found in seeds treated with combination of 250 ppm GA3 and 50 ppm KIN. In the combination treatments, while the moist chilling treatments for 15 days resulted in 68 and 73% germination, respectively, these rates were up to 95% in the moist chilling treatments for 30 days under continuous darkness and photoperiodic conditions. Mean germination time (MGT) in GA3 and KIN combinations was lower than in other treatments. Scarification with 80% sulphuric acid did not promote germination. The characteristics of physiological dormancy of S. germanica ssp. bithynica seeds are consistent with conditions of existence in the in alpine habitat of this species.  相似文献   

9.
  • This study investigated seed germination of Cardiospermum halicacabum, a medicinally important invasive species.
  • We compared mass, moisture content (MC), dormancy and dormancy‐breaking treatments and imbibition and germination of scarified and non‐scarified seeds of C. halicacabum from a low‐elevation dry zone (DZ), low‐elevation wet zone (WZ1) and mid‐elevation wet zone (WZ2) in Sri Lanka to test the hypothesis that the percentage of seeds with water‐impermeable seed coats (physical dormancy, PY) decreases with increased precipitation.
  • Seed mass was higher in WZ2 than in DZ and WZ1, while seed MC did not vary among the zones. All scarified DZ, WZ1 and WZ2 and non‐scarified DZ and WZ1 seeds imbibed water, but only a few non‐scarified WZ2 seeds did so. When DZ and WZ1 seeds were desiccated, MC and percentage imbibition decreased, showing that these seeds have the ability to develop PY. GA3 promoted germination of embryos excised from fresh DZ and WZ1 seeds and of scarified WZ2 seeds.
  • At maturity, seeds from DZ and WZ1 had only physiological dormancy (PD), while those from WZ2 had combinational dormancy (PY+PD). Thus, our hypothesis was not supported. Since a high percentage of excised embryos developed into normal seedlings; this is a low‐cost method to produce C. halicacabum plants for medicinal and ornamental purposes.
  相似文献   

10.
Zhang LW  HL Liu  DY Zhang  WG Bian 《Phyton》2015,84(1):58-63
Seed dormancy release and germination of Corispermum lehmannianum Bunge were tested using various treatments: temperature, cold stratification, gibberelins (GA3), dry storage and sand burial. Results showed that temperature and light did not affect the germination of fresh seeds, cold stratification and GA3 could improve seed germination, whereas dry storage and sand burial did not. The germination percentage was highest at 35/20 °C after the cold stratification and GA3 treatments. Corispermum lehmannianum seeds were classified as non-deep, Type-2, physiological dormancy (PD), whose seed dormancy could be released by cold stratification and GA3.  相似文献   

11.
Seed development, dormancy and germination of the American invasive tree species, Prunus serotina, are described for plants growing in a large forest in Belgium. Seeds of P. serotina were collected following anthesis in the first week of July and thereafter at fortnightly intervals. Seed dormancy, temperature requirements for germination and the soil seed bank were investigated. At maturation (about 105 days after anthesis), seed moisture content had decreased to around 13.7%, and 44% of the seeds had attained the capacity to germinate. Mature seeds of P. serotina exhibited physiological dormancy, germinating only after a long cold, moist stratification period. Highest germination percentage occurred in seeds treated with gibberellic acid (GA3), at 10°C. We found no evidence that P. serotina forms a persistent seed bank but noticed a persistent seedling bank in the field.  相似文献   

12.
Seeds ofTaxus maireiare known for their deep dormancy whichcan only be broken by a procedure involving warm stratificationfollowed by cold stratification. Treatments with alternatingtemperatures of 25/15 or 23/11 °C (12 h light) for 6 monthsfollowed by 5 °C for 3 months were successful in overcomingseed dormancy. After 6 months of warm stratification, cytologicalchanges observed included: enlargement of the embryo; a decreasein the number of lipid bodies; appearance of ER; and increasesin mitochondria, plastids, dictyosomes, vacuoles and microbodiesin the shoot apical meristem. Cold stratification followingthe warm treatment induced cell division, and one or two distinctnucleoli in the shoot apical meristem cells were observed. Bothwarm and cold stratification reduced endogenous ABA concentrationsfrom the original 8888 pg per freshly harvested seed to 392and 536 pg, respectively. Treatment with exogenous gibberellinsafter seeds had been warm-stratified showed that GA4and GA7wereeffective at promoting seed germination, but GA3was not. Theseresults suggest that the strong seed dormancy ofT. maireicouldbe caused by a high ABA content and underdevelopment of theembryos in freshly shed seeds. We conclude that warm stratificationwith alternating temperatures increases the growth of embryosby cell expansion and enlargement and decreases ABA content,but seeds still remain ungerminated. Cold stratification mayinduce the response to GAs and initiate cell division resultingin release from physiological dormancy and subsequent germinationofT. maireiseeds.Copyright 1998 Annals of Botany Company Taxus mairei; ultrastructure; abscisic acid; gibberellin; seed dormancy; stratification; germination.  相似文献   

13.
Yajuan Zhu  Ming Dong  Zhenying Huang   《Flora》2007,202(3):249-257
Leymus secalinus (Georg.) Tzvel. (Poaceae) is a dominant sand dune grass inhabiting the Mu-Us Sandland, semiarid China. Freshly harvested caryopses (seeds) are in non-deep physiological dormancy (non-deep PD) because of low percentage and slow rate of germination. Experiments were conducted to examine the effects of temperature, cold stratification, caryopsis coat scarification or partial removal of endosperm and sand burial on caryopsis dormancy, germination and seedling emergence. Caryopsis germination was significantly influenced by duration of cold stratification, temperature and their interactions. After 8 weeks of cold stratification, caryopsis germination percentage at 30 °C reached to 90%, equally in light or darkness. Rate and percentages of germination were also hastened and increased by scarifying the caryopsis coat or by artificial removal of different proportions of the endosperm. However, seedling developmental characteristics were significantly influenced by the proportion of the endosperm that remained in the caryopses. Seedling emergence, caryopsis germination and enforced dormancy in sand were significantly affected by sand burial depth. As sand burial depth increased, caryopsis germination and seedling emergence decreased whereas caryopsis enforced dormancy increased. 1–2 cm was the optimal depths for caryopses germination and seedling emergence. Although there were still 30% caryopses germinated at 8 cm, the maximal burial depth for seedling emergence was only 4 cm. The partial germination strategy regulated by non-deep PD, temperature and sand burial ensures that only a few caryopses germinated each time and may reduce risks for seedling survival.  相似文献   

14.
Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kit ex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S) of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA(3), 250 mg · l(-1)) and warm stratification (25 °C for 3 months) followed by low temperature (<15 °C) enhanced embryo growth rate (maximum of ca. 0.04 mm · day(-1) at 10 °C) and subsequent seed germination (radicle emergence; ca. 80% at 10 °C). Low germination occurred at warmer temperatures, and cold stratification (5 °C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca. 2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA(3) . Seeds of this species showed non-deep simple (root) - non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations.  相似文献   

15.
《农业工程》2023,43(1):54-61
The population of Magnolia lanuginosa a rare tree species of northeastern India has declined drastically owing to habitat destruction, low natural regeneration and over harvesting for its multipurpose uses. The present study was carried out to understand the type of dormancy and analyse the effect of storage on viability and germination behaviour of M. lanuginosa under various physical and chemical treatments. Seeds subjected to physical treatments such as water (cold, hot, and boiling), acid (H2SO4) and manual scarification failed in breaking dormancy. Seeds treated with growth regulators (GA3) had a significant effect on germination. It reduced the germination time and the shortest T50 was observed in seeds treated with 2000 mg/l of GA3 (non-scarified seeds) and 1000 mg/l of GA3 (scarified seeds). The use of KNO3 did not have any significant effect in breaking dormancy. However, the use of KNO3 along with GA3, increased the germination percentage. Seeds cold stratified (CS) for 60 days at 5 °C was effective in breaking dormancy and resulted in 84.26% germination. This indicates the prevalence of Type-1 Non deep physiological dormancy in M. lanuginosa seeds that requires a crucial CS period for proper embryo growth and development. The seeds stored in moist sand at 5 °C remained viable even after 120 days with 48.88% viability. The study would be helpful in devising seed germination protocols for mass production and reintroduction of the species into the wild.  相似文献   

16.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

17.
Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of Kingdom of Saudi Arabia, where it is a medicinally important species for the people in Saudi Arabia. Seeds of this species were collected from Mount Atharb in Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 min, immersion in boiling water for 10 min and exposure to 50 °C for 1 min. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35 °C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in different concentrations of mM NaCl in the light at 25 °C.Untreated seeds had low final germination 30%. Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25 °C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5 and 25 °C but germination was inhibited by higher temperatures (30 and 35 °C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition.  相似文献   

18.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

19.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

20.
Huang  Zhenying  Dong  Ming  Gutterman  Yitzchak 《Plant and Soil》2004,259(1-2):231-241
Psammochloa villosa (Trin.) Bor. (Poaceae), is distributed primarily in moving sand dunes of the Ordos Plateau, China. Freshly harvested caryopses (seeds) are in non-deep physiological dormancy (non-deep PD). Germination is slow and low and only over a narrow temperature range. A treatment of four weeks cold stratification at 3 to 5 °C in darkness was required to break non-deep PD, allowing germination to reach high percentages at higher temperatures and without light requirement. Rate and percentages of germination were increased by scarifying the caryopsis coat and by artificial removal of different proportions of the endosperm. However, seedling dry weight and increases in root and shoot lengths, were significantly influenced by the proportion of the endosperm that remained on the caryopses. Higher percentages of seedling emergence were obtained from the shallowly buried caryopses, ranging from 0.5–2.0 cm, and the depth of the caryopses in the sand affected the time of germination. The deeper the caryopses were buried, the more that remained ungerminated and in enforced dormancy. The caryopses germinated when the upper sand layer was removed and buried caryopses were at a suitable sand depth for germination, or when the sand was aerated. In natural habitats, germinated seedlings may be wholly exposed to the air by sand erosion and thus be exposed to drought stress. However, young seedlings have the ability to tolerate desiccation and to recover after rehydration. Root length at the `point of no return' is 4 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号