首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the phylum Planctomycetes were originally described as freshwater bacteria. Most recent studies, however, address planctomycete diversity in other environments colonized by these microorganisms, including marine and terrestrial ecosystems. This study was initiated in order to revisit the specific patterns of planctomycete diversity in freshwater habitats using cultivation-independent approaches. The specific focus was made on planctomycetes associated with Nuphar lutea (L.) Smith, an emergent macrophyte with floating leaves, which is widespread in the Holarctic. As revealed by Illumina pair-end sequencing of 16S rRNA gene fragments, the bacterial assemblages colonizing floating leaf blades of waterlilies sampled from two different boreal lakes displayed similar composition but were distinct from the planktonic bacterial communities. 16S rRNA gene fragments from the Planctomycetes comprised 0.1–1 and 1–2.2% of total 16S rRNA gene reads retrieved from water samples and plant leaves, respectively. Planktonic planctomycetes were mostly affiliated with the class Planctomycetaceae (77–97%), while members of the Phycisphaerae were less abundant (3–22%). The relative proportion of the latter group, however, increased by 13–45% on leaves of N. lutea. The Phycisphaera-related group WD2101, Pirellula-like planctomycetes, as well as Gemmata, Zavarzinella and Planctopirus species were the most abundant groups of planctomycetes associated with plant leaves, which may suggest their involvement in the degradation of plant-derived organic matter.  相似文献   

2.
Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses. Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine (TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomycete isolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) and molecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) in order to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout the profiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundance of planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliated with the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group. Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoye peat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mosse peat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundant TMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest that planctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and the change in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redox conditions at the oxic/anoxic interface.  相似文献   

3.
By means of fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes (FISH), it has been shown that members of the phylum Planctomycetes represent a numerically significant bacterial group in boreal Sphagnum peat bogs. The population size of planctomycetes in oxic layers of the peat bog profile was in the range of 0.4–2.0 × 107 cells per g of wet peat, comprising 4 to 13% of the total bacterial cell number. A novel effective approach that combined a traditional cultivation technique with FISH-mediated monitoring of the target organism during the isolation procedure has been developed for the isolation of planctomycetes. Using this approach, we succeeded in isolating several peat-inhabiting planctomycetes in a pure culture. Sequencing of the 16S rRNA genes from two of these isolates, strains A10 and MPL7, showed that they belonged to the planctomycete lineages defined by the genera Gemmata and Planctomyces, respectively. The 16S rRNA gene sequence similarity between strains A10 and MPL7 and the phylogenetically closest organisms, namely, Gemmata obscuriglobus and Planctomyces limnophilus, was only 90%. These results suggest that the indigenous planctomycetes inhabiting Sphagnum peat bogs are so far unknown organisms.  相似文献   

4.
Planctomycetes are ubiquitous in marine environment and were reported to occur in association with multicellular eukaryotic organisms such as marine macroalgae and invertebrates. Here, we investigate planctomycetes associated with the marine sponge Niphates sp. from the sub-tropical Australian coast by assessing their diversity using culture-dependent and -independent approaches based on the 16S rRNA gene. The culture-dependent approach resulted in the isolation of a large collection of diverse planctomycetes including some novel lineages of Planctomycetes from the sponge as well as sediment and seawater of Moreton Bay where this sponge occurs. The characterization of these novel planctomycetes revealed that cells of one unique strain do not possess condensed nucleoids, a phenotype distinct from other planctomycetes. In addition, a culture-independent clone library approach identified unique planctomycete 16S rRNA gene sequences closely related to other sponge-derived sequences. The analysis of tissue of the sponge Niphates sp. showed that the mesohyl of the sponge is almost devoid of microbial cells, indicating this species is in the group of ‘low microbial abundant’ (LMA) sponges. The unique planctomycete 16S rRNA gene sequences identified in this study were phylogenetically closely related to sequences from LMA sponges in other published studies. This study has revealed new insights into the diversity of planctomycetes in the marine environment and the association of planctomycetes with marine sponges.  相似文献   

5.
6.
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.  相似文献   

7.
By means of fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes (FISH), it has been shown that members of the phylum Planctomycetes represent a numerically significant bacterial group in boreal Sphagnum peat bogs. The population size of planctomycetes in oxic layers of the peat bog profile was in the range of 0.4-2.0 x 10(7) cells per g of wet peat, comprising 4 to 13% of the total bacterial cell number. A novel effective approach that combined a traditional cultivation technique with FISH-mediated monitoring of the target organism during the isolation procedure has been developed for the isolation of planctomycetes. Using this approach, we succeeded in isolating several peat-inhabiting planctomycetes in a pure culture. Sequencing of the 16S rRNA genes from two of these isolates, strains A10 and MPL7, showed that they belonged to the planctomycete lineages defined by the genera Gemmata and Planctomyces, respectively. The 16S rRNA gene sequence similarity between strains A10 and MPL7 and the phylogenetically closest organisms, namely, Gemmata obscuriglobus and Planctomyces limnophilus, was only 90%. These results suggest that the indigenous planctomycetes inhabiting Sphagnum peat bogs are so far unknown organisms.  相似文献   

8.
Planctomycetes are common inhabitants of northern wetlands. A significant proportion of these bacteria revealed in peat with the Planctomycetes-specific probes PLA46 and PLA886 is represented by filamentous forms which have not been cultured under laboratory conditions. In the present work, one of such organisms was isolated from a Sphagnum peat bog in a monoculture. The organism had large spherical cells assembled in long filaments. It could grow only in associations with bacterial satellites; attempts to isolate it in pure culture were unsuccessful. The organism was identified by PCR amplification, cloning, and subsequent analysis of its 16S rRNA gene fragment. Comparative sequence analysis revealed its affiliation with the Isosphaera-Singulisphaera group within the order Planctomycetales. The nucleotide sequence of the 16S rRNA gene of the new organism exhibited 94–96% similarity to those of the unicellular peat-inhabiting planctomycete Singulisphaera acidiphila and uncharacterized filamentous planctomycete “Nostocoida limicola III” from activated sludge. The new planctomycete utilized heteropolysaccharides of microbial origin as growth substrates and could grow at the low pH and temperatures typical of the northern wetlands.  相似文献   

9.
The depth distribution of planctomycete abundance has been examined in six different sites of the Sphagnum peat bog Bakchar, Tomsk oblast, Russia. In situ hybridization of peat with the fluorescently labeled oligonucleotide probes PLA46 and PLA886, reported to be group-specific for representatives of the phylum Planctomycetes, revealed two distinct population maxima of these bacteria in all of the profiles examined. The first population maximum was detected in the uppermost, oxic layer of the bog profile, while the second maximum was located at a depth of 30 cm below the water table level. The population sizes of planctomycetes in the uppermost layer and at a depth of 30 cm were of the same order of magnitude and comprised 0.5–1.5 × 107 and 0.4?0.7 × 107 cells per g?1 of wet peat, respectively. Only 25–30% of the total number of planctomycete cells in the anoxic layer could be detected if the probe PLA886, whose target specificity is restricted to taxonomically characterized aerobic planctomycetes of the genera Gemmata, Planctomyces, Pirellula, and Isosphaera, was used alone. Other planctomycete cells in this layer were detected only with the probe PLA46, which possesses a much wider scope. This suggests the affiliation of these organisms with a yet undescribed phylogenetic subgroup within the Planctomycetes.  相似文献   

10.

Background  

Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy.  相似文献   

11.
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.  相似文献   

12.
Jenkins C  Kedar V  Fuerst JA 《Genome biology》2002,3(6):research0031.1-research003111

Background  

The planctomycetes comprise a distinct group of the domain Bacteria, forming a separate division by phylogenetic analysis. The organization of their cells into membrane-defined compartments including membrane-bounded nucleoids, their budding reproduction and complete absence of peptidoglycan distinguish them from most other Bacteria. A random sequencing approach was applied to the genomes of two planctomycete species, Gemmata obscuriglobus and Pirellula marina, to discover genes relevant to their cell biology and physiology.  相似文献   

13.
New cultured strains of the planctomycete division (order Planctomycetales) of the domain Bacteria related to species in the genera Gemmata and Isosphaera were isolated from soil, freshwater, and a laboratory ampicillin solution. Phylogenetic analysis of the 16S rRNA gene from eight representative isolates showed that all the isolates were members of the planctomycete division. Six isolates clustered with Gemmata obscuriglobus and related strains, while two isolates clustered with Isosphaera pallida. A double-membrane-bounded nucleoid was observed in Gemmata-related isolates but not in Isosphaera-related isolates, consistent with the ultrastructures of existing species of each genus. Two isolates from this study represent the first planctomycetes successfully cultivated from soil.  相似文献   

14.
Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.  相似文献   

15.
Two bacterial isolates from soil samples taken in Korea, strains YM2-7T and WD2-19T, were characterized using a polyphasic approach. The cells were strictly aerobic, Gram-positive, motile with peritrichous flagella, and rod-shaped. Both strains formed ellipsoidal bulging positioned subterminal spores. Phylogenetic analysis of their 16S rRNA gene sequences revealed a clear affiliation with the Firmicutes. The 16S rRNA gene sequence similarity between YM2-7T and WD2-19T was 96.5%. Strains YM2-7T and WD2-19T showed 16S rRNA gene sequence similarities of 93.0–96.5% to type strains of recognized Cohnella species. The G+C contents of the DNA of strains YM2-7T and WD2-19T were 52.2 and 55.6 mol%, respectively. The major fatty acids of strains YM2-7T and WD2-19T were anteiso-C15:0 (44.4%), C16:0 (19.2%), and iso-C16:0 (16.8%) and anteiso-C15:0 (46.5%), iso-C16:0 (21.8%), and C16:0 (11.2%), respectively. Both strains contained menaquinone with seven isoprene units (MK-7) as the predominant quinone. Both strains had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysophosphatidylglycerol as the major polar lipids. Comparative analysis of phenotypic and phylogenetic traits indicated that strains YM2-7T and WD2-19T represented two novel species of the genus Cohnella. The names Cohnella soli sp. nov. (type strain YM2-7T =KACC 13346T =NBRC 106486T), and Cohnella suwonensis sp. nov. (type strain WD2-19T =KACC 13347T =NBRC 106485T) are proposed for these organisms.  相似文献   

16.
17.
Cell counts of planctomycetes showed that there were high levels of these organisms in the summer and low levels in the winter in biofilms grown in situ in two polluted rivers, the Elbe River and the Spittelwasser River. In this study 16S rRNA-based methods were used to investigate if these changes were correlated with changes in the species composition. Planctomycete-specific clone libraries of the 16S rRNA genes found in both rivers showed that there were seven clusters, which were distantly related to the genera Pirellula, Planctomyces, and Gemmata. The majority of the sequences from the Spittelwasser River were affiliated with a cluster related to Pirellula, while the majority of the clones from the Elbe River fell into three clusters related to Planctomyces and one deeply branching cluster related to Pirellula. Some clusters also contained sequences derived from freshwater environments worldwide, and the similarities to our biofilm clones were as high as 99.8%, indicating the presence of globally distributed freshwater clusters of planctomycetes that have not been cultivated yet. Community fingerprints of planctomycete 16S rRNA genes were generated by temperature gradient gel electrophoresis from Elbe River biofilm samples collected monthly for 1 year. Sixteen bands were identified, and for the most part these bands represented organisms related to the genus Planctomyces. The fingerprints showed that there was strong seasonality of most bands and that there were clear differences in the summer and the winter. Thus, seasonal changes in the abundance of Planctomycetales in river biofilms were coupled to shifts in the community composition.  相似文献   

18.
Question: How many years are required for a gradient of microtopography to be initiated in revegetated cutover peatlands and become similar to natural bogs? Location: Newly formed Sphagnum carpets on cutover peatlands that revegetated spontaneously after site abandonment (in Estonia), or following active restoration (in Canada) and on undisturbed natural bogs nearby. Methods: Moss surface height was measured along linear transects above a local reference level (the lowest point for a given transect). Heights of at least 20 cm were associated with hummocks. Frequency distributions of surface height and principal component analyses (separately for Canada and Estonia) were conducted to follow the evolution of microtopography in revegetated sites and their similarity with those of natural peatlands. In Canada, regressions were also performed to estimate the time required for the microtopography in revegetated cutover peatlands to become similar to that found in natural bogs. Results: Only 10–30 yr were needed for microstructures comparable to those in natural bogs to develop on restored peatlands where Sphagnum diaspores have been reintroduced. However, this process may take more than a century in cutover peatlands left to revegetate spontaneously. Conclusions: In cutover peatlands with spontaneous revegetation, hummock–hollow formation starts on bare peat which lacks both plant propagules and viable seed banks, and the initiation of microstructures is probably more akin to the process that occurs naturally. Nonetheless, hummock–hollow microtopography resembling that found in natural bogs without pools appeared, in all of the examined cutover peatlands, over periods that are short in terms of peatland development time‐scales. Active peatland restoration could effectively reduce the time required for initiation of microtopography by about 70 yr.  相似文献   

19.
We examined anoxic and aerobic basins and an anaerobic digestor of a municipal wastewater treatment plant for the presence of novel planctomycete-like diversity. Three 16S rRNA gene libraries were constructed by using a 16S rRNA-targeted universal reverse primer and a forward PCR primer specific for Planctomycetes. Phylogenetic analysis of 234 16S rRNA gene sequences defined 110 operational taxonomic units. The majority of these sequences clustered with the four known genera, Pirellula (32%), Planctomyces (18.4%), Gemmata (3.8%), and Isosphaera (0.4%). More interestingly, 42.3% of the sequences appeared to define two distantly separated monophyletic groups. The first group, represented by 35.5% of the sequences, was related to the Planctomyces group and branched as a monophyletic cluster. It exhibited between 11.9 and 20.3% 16S rRNA gene sequence dissimilarity in comparisons with cultivated planctomycetes. The second group, represented by 6.8% of the sequences, was deeply rooted within the Planctomycetales tree. It was distantly related to the anammox sequences (level of dissimilarity, 20.3 to 24.4%) and was a monophyletic cluster. The retrieved sequences extended the intralineage phylogenetic depth of the Plantomycetales from 23 to 30.6%. The lineages described here may have a broad diversity of undiscovered biochemical and metabolic novelty. We developed a new 16S rRNA-targeted oligonucleotide probe and localized members of one of the phylogenetic groups using the fluorescent in situ hybridization technique. Our results indicate that activated sludge contains very diverse representatives of this group, which grow under aerobic and anoxic conditions and even under anaerobic conditions. The majority of species in this group remain poorly characterized.  相似文献   

20.
Anaerobic strains affiliated with a novel order‐level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome‐assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号