首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Geraniol is an important industrial material and a potential candidate of advanced biofuels. One challenge of microbial geraniol production is the toxicity to hosts. However, the poor understanding on geraniol tolerance mechanism is an obstacle for developing geraniol tolerant host. This study genome-widely screened a shot-gun DNA library of Escherichia coli and found that recA is able to confer geraniol tolerance in E. coli. The recA knockout mutant was found extremely sensitive to geraniol. Based on our data, it was deciphered that recA provided tolerance through SOS response network responding to DNA damage caused by geraniol. RecA-mediated SOS response activates the homologous recombinational repair by RecB and RecN for corrective DNA maintenance. This protection mechanism suggests an effective strategy to combat geraniol toxicity in E. coli.  相似文献   

2.
SOS box of the recA promoter, PVRecA from Vibrio natriegens was characterized, cloned and expressed in a probiotic strain E. coli Nissle 1917. This promoter was then rationally engineered according to predicted interactions between LexA repressor and PVRecA. The redesigned PVRecA-AT promoter showed a sensitive and robust response to DNA damage induced by UV and genotoxic compounds. Rational design of PVRecA coupled to an amplification gene circuit increased circuit output amplitude 4.3-fold in response to a DNA damaging compound mitomycin C. A TetR-based negative feedback loop was added to the PVRecA-AT amplifier to achieve a robust SOS system, resistant to environmental fluctuations in parameters including pH, temperature, oxygen and nutrient conditions. We found that E. coli Nissle 1917 with optimized PVRecA-AT adapted to UV exposure and increased SOS response 128-fold over 40 h cultivation in turbidostat mini-reactor. We also showed the potential of this PVRecA-AT system as an optogenetic actuator, which can be controlled spatially through UV radiation. We demonstrated that the optimized SOS responding gene circuits were able to detect carcinogenic biomarker molecules with clinically relevant concentrations. The ultrasensitive SOS gene circuits in probiotic E. coli Nissle 1917 would be potentially useful for bacterial diagnosis.  相似文献   

3.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

4.
Summary Cellular activities normally inducible by DNA damage (SOS functions) are expressed, without DNA damage, in recA441 (formerly tif-1) mutants of Escherichia coli at 42° C but not at 30° C. We describe a strain (SC30) that expresses SOS functions (including mutator activity, prophage induction and copious synthesis of recA protein) constitutively at both temperatures. SC30 is one of four stable subclones (SC strains) derived from an unstable recombinant obtained in a conjugation between a recA441 K12 donor and a recA + B/r-derived recipient. SC30 does not owe its SOS-constitutive phenotype to a mutation in the lexA gene (which codes the repressor of recA and other DNA damage-inducible genes), since it is lexA +. Each of the SC strains expresses SOS functions in a distinctively anomalous way. We show that the genetic basis for the differences in SOS expression among the SC strains is located at or very near the recA locus. We propose that resolution of genetic instability in this region, in the original recombinant, has altered the pattern of expression of SOS functions in the SC strains.  相似文献   

5.
Summary In Escherichia coli B/r the expression of UV inducible (SOS) functions is under the control of the recA and lexA genes. In this study we have characterized mutants which are altered in their ability to express SOS functions. These mutants were isolated as UV resistant UV nonmutable (Rnm) derivatives of the lexA102 uvrA155 mutant strain WP51. The UV resistance of these Rnm strains is a result of the suppression of lexA102 mediated UV sensitivity. Genetic mapping of rnm mutations shows that the two predominant classes, rnmA and rnmB, map in or very near the lexA and recA genes respectively. rnmA mutations differ from rnmB with respectively recA protein synthesis. rnmA mutations do not restore the ability to express high levels of recA protein after UV treatment whereas rnmB mutations result in constitutive expression of high levels of recA protein. However, both rnmA and rnmB mutant strains inhibit postirradiation DNA degradation. This shows that in rnmA strains, high levels of recA protein are not needed to inhibit postirradiation DNA degradation.The genetic map location and constitutive expression of recA protein synthesis resulting from rnmB mutations suggests that they are operator constitutive mutations of the recA gene. The result that the lexA + gene is required for the expression of UV mutagenesis in rnmB mutants shows that high levels of recA protein do not circumvent the need for the lexA + gene product in this process. Thus, while the lexA gene product is required for the induction of recA protein synthesis, lexA must have an additional role in UV induced mutagenesis.  相似文献   

6.
Summary A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria — 30 species belonging to 20 different genera — to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.  相似文献   

7.
Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 μM, 1.1 μM, and 141 μM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.  相似文献   

8.
Summary The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA +-dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication.The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lexA mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-51 mutation, an intragenic suppressor of lexA3.Induced stable DNA replication was found to be considerably more resistant to UV irradiation than nromal replication both in a uvrA6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed.  相似文献   

9.
We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death.  相似文献   

10.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA? mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

11.
The life cycle of phage λ has been studied extensively. Of particular interest has been the process leading to the decision of the phage to switch from lysogenic to lytic cycle. The principal participant in this process is the λcI repressor, which is cleaved under conditions of DNA damage. Cleaved λcI no longer acts as a repressor, allowing phage λ to switch from its lysogenic to lytic cycle. The well‐known mechanism responsible for λcI cleavage is the SOS response. We have recently reported that the Escherichia coli toxin‐antitoxin mazEF pathway inhibits the SOS response; in fact, the SOS response is permitted only in E. coli strains deficient in the expression of the mazEF pathway. Moreover, in strains lysogenic for prophage λ, the SOS response is enabled by the presence of λrexB. λRexB had previously been found to inhibit the degradation of the antitoxin MazE, thereby preventing the toxic action of MazF. Thus, phage λ rexB gene not only safeguards the prophage state by preventing death of its E. coli host but is also indirectly involved in the lysogenic–lytic switch.  相似文献   

12.
13.
The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response.  相似文献   

14.
Here we report the cell surface display of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusion by employing the N- and C-terminal domains of ice nucleation protein (INPNC) as an anchoring motif. An E. coliPseudomonas shuttle vector, pNOG33, coding for INPNC–OPH–GFP was constructed for targeting the fusion onto the cell surface of p-nitrophenol (PNP)-degrading P. putida JS444. The surface localization of INPNC–OPH–GFP was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH–GFP was demonstrated by OPH assays and fluorescence measurements. Surface display of macromolecular OPH–GFP fusion (63 kDa) neither inhibited cell growth nor affected cell viability. These results suggest that INP is an useful tool for the presentation of heterologous proteins on cell surfaces of indigenous microbes. The engineered P. putida JS444 degraded organophosphates (OPs) as well as PNP rapidly and could be easily monitored by fluorescence. Parathion (100 mg kg−1) could be degraded completely within 15 days in soil inoculated with the engineered strain. These merits make this engineered strain an ideal biocatalyst for in situ bioremediation of OP-contaminated soil.  相似文献   

15.
Bile salts are prevalent in the mammalian intestine, a natural habitat of Escherichia coli. The bile salts deoxycholate, chenodeoxycholate, ursodeoxycholate, and glycocholate were tested for their effect on induction of 13 specific stress response genes. The most consistently activated E. coli promoters were those for genes micF, osmY, and dinD. MicF and osmY gene products are associated with membrane functions and are responsive to oxidative stress. DinD is induced by DNA damage as part of the SOS response. These results indicate that bile acids, to which E. coli are naturally exposed, induce expression of specific stress response genes, possibly in response to membrane perturbation, oxidative stress, and DNA damage. Altered expression of stress-response genes may also promote interaction of E. coli with cells of the colonic epithelium. Received: 5 March 1999 / Accepted: 2 April 1999  相似文献   

16.
抗菌肽P7抑制大肠杆菌的非膜作用机制北大核心CSCD   总被引:1,自引:0,他引:1  
陈旋  李莉蓉 《微生物学报》2016,56(11):1737-1745
【目的】研究抗菌肽P7抑制大肠杆菌的非膜作用机制。【方法】P7与溴化乙锭竞争结合大肠杆菌基因组DNA的荧光光谱,分析P7与DNA的结合方式;流式细胞术分析P7与大肠杆菌基因组DNA结合对细菌细胞周期的影响;采用磁珠富集和PCR扩增相结合的方法分析P7特异结合的DNA序列;通过实时荧光定量PCR分析P7对大肠杆菌DNA复制和SOS损伤修复基因表达的影响;核酸染料的荧光分析研究P7对大肠杆菌DNA和RNA合成的影响。【结果】P7以嵌插的方式作用于大肠杆菌基因组DNA碱基对并形成肽-DNA复合物,使溴化乙锭-DNA复合体系的荧光强度减弱。P7可以显著增加大肠杆菌细胞周期中S期细胞数目,抑制大肠杆菌DNA复制。P7特异性结合rnh A使该基因表达水平显著下调2.24倍。同时,在肽的影响下参与大肠杆菌DNA复制相关的ssb、dna G、lig B和rnh A基因的表达水平显著下调(P<0.05),DNA损伤修复的rec A和rec N基因显著上调(P<0.05)。P7可降低大肠杆菌DNA和RNA的合成。【结论】P7特异性地结合rnh A序列引起大肠杆菌DNA的损伤并抑制大肠杆菌的DNA复制。在P7的影响下,参与大肠杆菌DNA复制相关的基因的表达水平下调,DNA损伤修复基因显著上调,同时抑制大肠杆菌DNA和RNA的合成。  相似文献   

17.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli ΔrecA cells, as compared to the wild-type recA + cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recAΔ21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the ΔrecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of γ-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.  相似文献   

18.
Summary UV irradiation of competent cells of Escherichia coli K12 produced an increase in the efficiency of transformation with plasmid DNA. This phenomenon has been called IPTE (increase in plasmid transformation efficiency) and is dependent on the activated state of the RecA protein. IPTE is independent of the lexA, recB recC, and recF genes. It is not related to the size or the replicon type of the plasmid. Furthermore, it is also induced in cells which have been previously treated with other SOS system-inducing agents such as bleomycin, mitomycin C, or nalidixic acid. IPTE is therefore similar to other repair (SOS) functions inducible by DNA damage since all of them are dependent upon activation of the RecA protein. IPTE differs from other SOS functions in the absence of a direct control by the LexA repressor.  相似文献   

19.
20.
Radiation resistance of Escherichia coli cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recF, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB1157 and highly radiation-resistant isogenic strain Gamr444. An optimal balance ensuring a high γ resistance of the Gamr444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号