首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
绿针假单胞菌(Pseudomonas chlororaphis)是目前研究较多的生防菌种之一.19世纪初被Miguela首次分离,将其鉴定为假单胞菌(Pseudomonas),并将机会性病原菌绿脓杆菌作为其模式菌株,而后Peix于2007年重新将其分类为绿针假单胞菌(P.chlororaphis).目前该菌种已报道有4...  相似文献   

2.
Ten different Pseudomonas strains isolated from contaminated soils were tested for expression of active dioxygenases. Of these, two different clusters, related to strain origin were observed. The first included two P. fluorescens strains and two P. aeruginosa strains isolated from soils polluted with polyaromatic hydrocarbons and the second two P. cepacia strains and four P. chlororaphis strains from soils with polyphenols. All the isolates showed catechol 1,2-dioxygenase basal activity, while other dioxygenases (catechol 2,3-dioxygenase, protocatechuate 2,3-, 3,4- and 4,5-dioxygenases) were detected only after growth in the presence of suitable inducers (benzoate, catechol, salicylate, phenol). Significant induction of catechol 1,2-dioxygenase, the major activity of the tested strains, was also observed when combining starvation with the presence of high molecular weight aromatic hydrocarbons with recalcitrant structures (fluoranthene, chrysene, benzanthracene, pyrene).  相似文献   

3.
The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants.  相似文献   

4.
In an attempt to select potential biocontrol agents against Pythium spp. and Rhizoctonia spp. root pathogens for use in soilless systems, 12 promising bacteria were selected for further investigations. Sequence analysis of the 16S rRNA gene revealed that three strains belonged to the genus Enterobacter, whereas nine strains belonged to the genus Pseudomonas. In in vitro assays, one strain of Pseudomonas sp., Pf4, closely related to Pseudomonas protegens (formerly Pseudomonas fluorescens), showed noteworthy antagonistic activity against two strains of Pythium aphanidermatum and two strains of Rhizoctonia solani AG 1-IB, with average inhibition of mycelial growth >80%. Strain Pf4 was used for in vivo treatments on lamb’s lettuce against R. solani root rot in small-scale hydroponics. Pf4-treated and untreated plants were daily monitored for symptom development and after two weeks of infection, a significant protective effect of Pf4 against root rot was recorded. The survival and population density of Pf4 on roots were also checked, demonstrating a density above the threshold value of 105?CFU?g?1 of root required for disease suppression. Known loci for the synthesis of antifungal metabolites, detected using PCR, and draft-genome sequencing of Pf4 demonstrated that Pseudomonas sp. Pf4 has the potential to produce an arsenal of secondary metabolites (plt, phl, ofa and fit-rzx gene clusters) very similar to that of the well-known biocontrol P. protegens strain Pf-5.  相似文献   

5.
Pseudomonas isolates from tropical environments have been underexplored and may form an untapped reservoir of interesting secondary metabolites. In this study, we compared Pseudomonas and cyclic lipopeptide (CLP) diversity in the rhizosphere of a cocoyam root rot disease (CRRD) suppressive soil in Boteva, Cameroon with those from four conducive soils in Cameroon and Nigeria. Compared with other soils, Boteva andosols were characterized by high silt, organic matter, nitrogen and calcium. Besides, the cocoyam rhizosphere at Boteva was characterized by strains belonging mainly to the P. koreensis and P. putida (sub)groups, with representations in the P. fluorescens, P. chlororaphis, P. jessenii and P. asplenii (sub)groups. In contrast, P. putida isolates were prominent in conducive soils. Regarding CLP diversity, Boteva was characterized by strains producing 11 different CLP types with cocoyamide A producers, belonging to the P. koreensis group, being the most abundant. However, putisolvin III-V producers were the most dominant in the rhizosphere of conducive soils in both Cameroon and Nigeria. Furthermore, we elucidated the chemical structure of putisolvin derivatives—putisolvin III-V, and described its biosynthetic gene cluster. We show that high Pseudomonas and metabolic diversity may be driven by microbial competition, which likely contributes to soil suppressiveness to CRRD.  相似文献   

6.
The aim of this study was to inventory the types of plant growth‐promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty‐four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4‐diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1‐aminocyclopropane‐1‐carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf‐5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1‐96. Pseudomonas protegens‐ and P. chlororaphis‐like strains had the greatest biocontrol activity against Rhizoctonia root rot and take‐all of wheat. Pseudomonas protegens and P. brassicacearum‐like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well‐described PGPR found in agricultural soils worldwide.  相似文献   

7.
This study details the isolation and characterisation of Pseudomonas chlororaphis subsp. aurantiaca strain Pa40, and is the first to examine P. chlororaphis for use in suppression of wheat sharp eyespot on wheat. Pa40 was isolated during an investigation aimed to identify biocontrol agents for Rhizoctonia cerealis. Over 500 bacterial strains were isolated from the rhizosphere of infected wheat and screened for in vitro antibiosis towards R. cerealis and ability to provide biocontrol in planta. Twenty‐six isolates showed highly antagonistic activity towards R. cerealis, in which Pseudomonas spp. and Bacillus spp. were predominant members of the antagonistic community. Strain Pa40 exhibited clear and consistent suppression of wheat sharp eyespot disease in a greenhouse study and suppression was comparable to that of chemical treatment with validamycin A. Pa40 was identified as P. chlororaphis subsp. aurantiaca by the Biolog identification system combined with 16S rDNA, atpD, carA and recA sequence analysis and biochemical and physiological characteristics. To determine broad‐spectrum applicability and the specific mechanisms involved in Pa40's pathogen suppression this strain was tested for antibiosis towards various phytopathogens and assayed for many biocontrol activities and plant‐beneficial traits. Strain Pa40 inhibited the growth of 10 of 13 phytopathogenic fungal strains and six of eight phytopathogenic bacteria tested. This original work characterises HCN, protease and siderophore production in P. chlororaphis. Each of these characteristics likely contributed to Pa40's biocontrol capabilities as well as stimulation of the hypersensitive response in tobacco and the presence of genes involved in the biosynthesis of phenazine, 2‐hydroxylated phenazine and pyrrolnitrin.  相似文献   

8.

The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.

  相似文献   

9.
Recent and substantial yield losses of Styrian oil pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) are primarily caused by the ascomycetous fungus Didymella bryoniae but bacterial pathogens are frequently involved as well. The diversity of endophytic microbial communities from seeds (spermosphere), roots (endorhiza), flowers (anthosphere), and fruits (carposphere) of three different pumpkin cultivars was studied to develop a biocontrol strategy. A multiphasic approach combining molecular, microscopic, and cultivation techniques was applied to select a consortium of endophytes for biocontrol. Specific community structures for Pseudomonas and Bacillus, two important plant-associated genera, were found for each microenvironment by fingerprinting of 16S ribosomal RNA genes. All microenvironments were dominated by bacteria; fungi were less abundant. Of the 2,320 microbial isolates analyzed in dual culture assays, 165 (7%) were tested positively for in vitro antagonism against D. bryoniae. Out of these, 43 isolates inhibited the growth of bacterial pumpkin pathogens (Pectobacterium carotovorum, Pseudomonas viridiflava, Xanthomonas cucurbitae); here only bacteria were selected. Microenvironment-specific antagonists were found, and the spermosphere and anthosphere were revealed as underexplored reservoirs for antagonists. In the latter, a potential role of pollen grains as bacterial vectors between flowers was recognized. Six broad spectrum antagonists selected according to their activity, genotypic diversity, and occurrence were evaluated under greenhouse conditions. Disease severity on pumpkins of D. bryoniae was significantly reduced by Pseudomonas chlororaphis treatment and by a combined treatment of strains (Lysobacter gummosus, P. chlororaphis, Paenibacillus polymyxa, and Serratia plymuthica). This result provides a promising prospect to biologically control pumpkin diseases.  相似文献   

10.
Bacillus thuringiensis isolates were recovered from numerous sources including soil, grain dust, plant leaves, diseased insect larvae from insectariums and sericulture environments. B. thuringiensis strains were isolated using acetate selection method with 0.025?M. concentration. The morphology of crystals was studied using light microscopy. Bioassay tests were conducted on Ephestia kuehniella (Zeller) (L.) as well as Pieris brassicae (L.). Based on the results, 35 B. thuringiensis strains were isolated from 140 samples. Majority of strains (%31.42) had bipyramidal crystals. There was a significant difference in toxicity to insects among B. thuringiensis isolates; 28.57 and 14.28% of the isolates were toxic to the larvae of P. brassicae and E. kuehniella, respectively, causing more than 50% mortality. Results indicated that B. thuringiensis isolates with insecticidal activity could be used in integrated pest management to control farm and stored product pests.  相似文献   

11.
The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs) and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA). To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS) and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a differential strain dependency which is likely to be in line with their niche of origin.  相似文献   

12.
A total of 161 different Streptomyces isolates were recovered from 5 soil samples representing the driest habitats of Jordan. These were then characterized and assessed for their antagonistic activity against four clinical multi-drug resistant Pseudomonas aeruginosa test pathogens. Results indicated that only 3 strains out of 139 and 6 out of 22 isolated at 27°C and 45°C, respectively, were active against at least three strains of pathogenic Pseudomonas. However, three Streptomyces strains (J2b, J4, and J12) that were isolated at 45°C inhibited all of the tested pathogens with an inhibition zone ranging between 5 and 16 mm in diameter. Data obtained from comparing the inhibition activity of these unique Streptomyces strains toward multi-resistant Pseudomonas pathogens with standard used antibiotics revealed that these isolates produce possible different inhibitory bioactive compounds other than the standard antibiotics.  相似文献   

13.
14.
Pseudomonas chlororaphis strain 449 isolated from the rhizosphere of maize suppresses numerous plant pathogens in vitro. The strain produces phenazine antibiotics and synthesizes at least three types of quorum sensing signaling molecules, N-acylhomoserine lactones. Here we have shown that the rhizospheric P. chlororaphis strains 449, well known strain 30–84 as well as two other P. chlororaphis strains exhibit polygalacturonase activity. Using mini-Tn5 transposon mutagenesis, four independent mutants of strain P. chlororaphis 449 with insertion of mini-Tn5 Km2 in gene gacS of two-component GacA-GacS system of global regulation were selected. All these mutant strains were deficient in production of extracellular proteinase(s), phenazines, N-acylhomoserine lactones synthesis, and did not inhibit the growth of G+ bacteria in comparison with the wild type strain. The P. chlororaphis 449-06 gacS mutant studied in greater detail was deficient in polygalacturonase, pectin methylesterase activities, swarming motility and antifungal activity. It is the first time the involvement of GacA-GacS system in the regulation of enzymes of pectin metabolism, polygalacturonase and pectin methylesterase, was demonstrated in fluorescent pseudomonads.  相似文献   

15.
The influence of plant exudates on the antifungal activity of Pseudomonas chlororaphis strains (IB 6, IB 51) and P. putida (IB 17) was investigated in model experiments. Using UV spectroscopy and polarimetry methods, triglyceropeptide metabolites from the Pseudomonas strain were shown to form intermolecular complexes with plant exudates such as carbohydrates, organic acids, and amino acids. The stoichiometric contents of metabolite-exudate complexes were evaluated.  相似文献   

16.
Aims: To determine the role of phenazines (PHZ) and lipopeptide surfactants (LPs) produced by Pseudomonas in suppression of stem rot disease of groundnut, caused by the fungal pathogen Sclerotium rolfsii. Methods and Results: In vitro assays showed that PHZ‐producing Pseudomonas chlororaphis strain Phz24 significantly inhibited hyphal growth of S. rolfsii and suppressed stem rot disease of groundnut under field conditions. Biosynthesis and regulatory mutants of Phz24 deficient in PHZ production were less effective in pathogen suppression. Pseudomonas strains SS101, SBW25 and 267, producing viscosin or putisolvin‐like LPs, only marginally inhibited hyphal growth of S. rolfsii and did not suppress stem rot disease. In contrast, Pseudomonas strain SH‐C52, producing the chlorinated LP thanamycin, inhibited hyphal growth of S. rolfsii and significantly reduced stem rot disease of groundnut in nethouse and field experiments, whereas its thanamycin‐deficient mutant was less effective. Conclusions: Phenazines and specific lipopeptides play an important role in suppression of stem rot disease of groundnut by root‐colonizing Pseudomonas strains. Significance and Impact of the Study: Pseudomonas strains Phz24 and SH‐C52 showed significant control of stem rot disease. Treatment of seeds or soil with these strains provides a promising supplementary strategy to control stem rot disease of groundnut.  相似文献   

17.
Salmonella enterica and its serovars have been associated with pathogen contamination of tomatoes with numerous outbreaks of salmonellosis. To improve food safety, pathogen control is of immediate concern. The aim of this research was to assess the populations of natural microflora (aerobic mesophilic bacteria, lactic acid bacteria, yeasts and moulds and Pseudomonas species) on tomatoes, and evaluate the efficacy of Pseudomonas fluorescens (Pf) and Pseudomonas chlororaphis (Pc) for inactivation of Salmonella on tomatoes. Microflora were determined on sanitised and unsanitised produce and enumerated on Plate Count Agar, de Man, Rogosa and Sharpe medium, Potato Dextrose Agar and Pseudomonas Agar F media. The efficacy of Pc and Pf for inactivation of S. enterica serovars Montevideo, Typhimurium and Poona was determined on spot-inoculated tomato stem scars. The effects of storage time on bacterial populations were also investigated. On unsanitised tomatoes, lactic acid bacteria, Pseudomonas sp., aerobic mesophilic bacteria and yeasts and moulds ranged from 3.31–4.84, 3.93–4.77, 4.09–4.80 and 3.83–4.67 log CFU/g of produce, respectively. The microflora were similar at 0 and 24 storage hours on sanitised produce. The suppression of Salmonella Montevideo by P. chlororaphis and P. fluorescens on tomatoes ranged from 0.51 to 2.00 log CFU/g of produce. On Salmonella Montevideo and S. Typhimurium, the suppressive effects ranged from 0.51 to 0.95 and 0.46 to 2.00 log CFU/g of produce, respectively. The pathogen suppressive effects may be attributed to competition ability of Pseudomonas relative to Salmonella strains. Pseudomonas strains may be effective against Salmonella strains as a post-harvest application, but strain synergy is required to optimise pathogen reductions.  相似文献   

18.
Fluorescent Pseudomonas strains producing the antimicrobial secondary metabolite 2,4-diacetylphloroglucinol (Phl) play a prominent role in the biocontrol of plant diseases. A subset of Phl-producing fluorescent Pseudomonas strains, which can additionally synthesize the antimicrobial compound pyoluteorin (Plt), appears to cluster separately from other fluorescent Pseudomonas spp. based on 16S rRNA gene analysis and shares at most 98.4% 16S rRNA gene sequence identity with any other Pseudomonas species. In this study, a polyphasic approach based on molecular and phenotypic methods was used to clarify the taxonomy of representative Phl+ Plt+ strains isolated from tobacco, cotton or wheat on different continents. Phl+ Plt+ strains clustered separately from their nearest phylogenetic neighbors (i.e. species from the ‘P. syringae’, ‘P. fluorescens’ and ‘P. chlororaphis’ species complexes) based on rpoB, rpoD or gyrB phylogenies. DNA-DNA hybridization experiments clarified that Phl+ Plt+ strains formed a tight genomospecies that was distinct from P. syringae, P. fluorescens, or P. chlororaphis type strains. Within Phl+ strains, the Phl+ Plt+ strains were differentiated from other biocontrol fluorescent Pseudomonas strains that produced Phl but not Plt, based on phenotypic and molecular data. Discriminative phenotypic characters were also identified by numerical taxonomic analysis and siderotyping. Altogether, this polyphasic approach supported the conclusion that Phl+ Plt+ fluorescent Pseudomonas strains belonged to a novel species for which the name Pseudomonas protegens is proposed, with CHA0T (=CFBP 6595T, =DSM 19095T) as the type strain.  相似文献   

19.
The aim of the study was to screen various kinds of samples for Pseudomonas aeruginosa specific phages and to isolate and partially characterize those with broad activity spectra. The Pseudomonas specific phages were isolated using an enrichment procedure with single strains or the cocktail of P. aeruginosa strains as hosts. Using the described procedure, phages were successfully isolated only from water samples, while in soil and feces no Pseudomonas specific phages were detected. The lytic spectra of isolated phages were determined by spot method on lawns of 33 P. aeruginosa strains and five species belonging to family Enterobacteriaceae. The results showed that among isolated phages, 001A, δ, and I possessed the broad activity spectra, as were able to plaque on more than 50% of tested P. aeruginosa strains, while none of the phages were able to lyse the other tested species. Significant differences in phage activity spectra were not observed when P. aeruginosa cocktail was applied for sample enrichment. The most of the phages examined by electron microscopy belonged to family Siphoviridae, while the broad activity spectra isolates, except for 001A, possessed morphological characteristics of family Podoviridae. Digested DNA of the phages δ and I showed similar patterns, indicating the prevalence and success of this phage type in the environment.  相似文献   

20.
The ground-pearl Eurhizococcus brasiliensis is an important insect pest of grapes. Nowadays, its biology is still barely known and studies related to its secondary symbionts are virtually non-existent. Our main goal was to evaluate the bacterial diversity associated with cysts of E. brasiliensis using a culture-dependent approach. Six different isolation media were used and shown to be suitable for culturing bacteria associated with E. brasiliensis. A total of 39 bacteria strains were isolated and classified into 10 different morphotypes. The ISP-4 medium was the most suitable for bacteria isolation from cysts of the ground-pearl, providing the highest number of morphotypes. 16S rDNA gene analysis demonstrated a high diversity of bacteria associated with cysts, with six Pseudomonas chlororaphis isolates (the most predominant morphotype) and three different morphotypes of Bacillus spp. as the most representative genera. The phylogenetic analysis showed close affinity between the isolated morphotypes and bacterial strains usually isolated from plant and soil samples. Sphingopyxis and Stenotrophomonas were isolated for the first time from arthropods. Although it was not possible to determine the primary source of infection by these bacteria, our data suggests that these microorganisms may be transitory and acquired from the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号