首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prokaryotic organisms can be divided into two main groups depending upon whether their cell envelopes contain one membrane (monoderms) or two membranes (diderms). It is important to understand how these and other variations that are observed in the cell envelopes of prokaryotic organisms have originated. In 2009, James Lake proposed that cells with two membranes (primarily Gram-negative bacteria) originated from an ancient endosymbiotic event involving an Actinobacteria and a Clostridia (Lake 2009). However, this Perspective argues that this proposal is based on a number of incorrect assumptions and the data presented in support of this model are also of questionable nature. Thus, there is no reliable evidence to support the endosymbiotic origin of double membrane bacteria. In contrast, many observations suggest that antibiotic selection pressure was an important selective force in prokaryotic evolution and that it likely played a central role in the evolution of diderm (Gram-negative) bacteria. Some bacterial phyla, such as Deinococcus-Thermus, which lack lipopolysaccharide (LPS) and yet contain some characteristics of the diderm bacteria, are postulated as evolutionary intermediates (simple diderms) in the transition between the monoderm bacterial taxa and the bacterial groups that have the archetypal LPS-containing outer cell membrane found in Gram-negative bacteria. It is possible to distinguish the two stages in the evolution of diderm-LPS cells (viz. monoderm bacteria → simple diderms lacking LPS → LPS containing archetypal diderm bacteria) by means of conserved inserts in the Hsp70 and Hsp60 proteins. The insert in the Hsp60 protein also distinguishes the traditional Gram-negative diderm bacterial phyla from atypical taxa of diderm bacteria (viz. Negativicutes, Fusobacteria, Synergistetes and Elusimicrobia). The Gram-negative bacterial phyla with an LPS-diderm cell envelope, as defined by the presence of the Hsp60 insert, are indicated to form a monophyletic clade and no loss of the outer membrane from any species from this group seems to have occurred. This argues against the origin of monoderm prokaryotes from diderm bacteria by loss of outer membrane.  相似文献   

2.
Phospholipids provide the membrane with its barrier function and play a role in a variety of processes in the bacterial cell, as responding to environmental changes. The aim of the present study was to characterize the physiological and metabolic response of Bradyrhizobium SEMIA 6144 to saline and temperature stress. This study provides metabolic and compositional evidence that nodulating peanut Bradyrhizobium SEMIA 6144 is able to synthesize fatty acids, to incorporate them into its phospholipids (PL), and then modify them in response to stress conditions such as temperature and salinity. The fatty acids were formed from [1-14C]acetate and mostly incorporated in PL (95%). Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) were found to be the major phospholipids in the bacteria analyzed. The amount and the labeling of each individual PL was increased by NaCl, while they were decreased by temperature stress. The amount of PC, PE, and PG under the combined stresses decreased, as in the temperature effect. The results indicate that synthesized PL of Bradyrhizobium SEMIA 6144 are modified under the tested conditions. Because in all conditions tested the PC amount was always modified and PC was the major PL, we suggest that this PL may be involved in the bacteria response to environmental conditions.  相似文献   

3.
Frequently bacteria are exposed to membrane-damaging cationic antimicrobial molecules (CAMs) produced by the host's immune system (defensins, cathelicidins) or by competing microorganisms (bacteriocins). Staphylococcus aureus achieves CAM resistance by modifying anionic phosphatidylglycerol with positively charged L-lysine, resulting in repulsion of the peptides. Inactivation of the novel S. aureus gene, mprF, which is found in many bacterial pathogens, has resulted in the loss of lysylphosphatidylglycerol (L-PG), increased inactivation by CAM-containing neutrophils, and attenuated virulence. We demonstrate here that expression of mprF is sufficient to confer L-PG production in Escherichia coli, which indicates that MprF represents the L-PG synthase. L-PG biosynthesis was studied in vitro and found to be dependent on phosphatidylglycerol and lysyl-tRNA, two putative substrate molecules. Further addition of cadaverin, a competitive inhibitor of the lysyl-tRNA synthetases, or of RNase A abolished L-PG biosynthesis, thereby confirming the involvement of lysyl-tRNA. This study forms the basis for further detailed analyses of L-PG biosynthesis and its role in bacterial infections.  相似文献   

4.
The well-recognized phospholipids (PLs) of Mycobacterium tuberculosis (Mtb) include several acidic species such as phosphatidylglycerol (PG), cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG), is a component of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF)-lysyl-tRNA synthetase (lysU) protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows increased association with lysosome-associated membrane protein–positive vesicles, and it exhibits altered membrane potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and for survival of the pathogen upon infection.  相似文献   

5.
All bacteria are surrounded by at least one bilayer membrane mainly composed of phospholipids (PLs). Biosynthesis of the most abundant PLs phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) is well understood in model bacteria such as Escherichia coli. It recently emerged, however, that the diversity of bacterial membrane lipids is huge and that not yet explored biosynthesis pathways exist, even for the common PLs. A good example is the plant pathogen Xanthomonas campestris pv. campestris. It contains PE, PG and CL as major lipids and small amounts of the Nmethylated PE derivatives monomethyl PE and phosphatidylcholine (PC = trimethylated PE). Xanthomonas campestris uses a repertoire of canonical and non‐canonical enzymes for the synthesis of its membrane lipids. In this minireview, we briefly recapitulate standard pathways and integrate three recently discovered pathways into the overall picture of bacterial membrane biosynthesis.  相似文献   

6.
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras‐GTPases, certain virulence factors of Gram negative bacteria, Rho‐GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G‐proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four‐helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.  相似文献   

7.
Iron is an essential nutrient for bacterial growth but poorly bioavailable. Bacteria scavenge ferric iron by synthesizing and secreting siderophores, small compounds with a high affinity for iron. Pyochelin (PCH) is one of the two siderophores produced by the opportunistic pathogen Pseudomonas aeruginosa. After capturing a ferric iron molecule, PCH-Fe is imported back into bacteria first by the outer membrane transporter FptA and then by the inner membrane permease FptX. Here, using molecular biology, 55Fe uptake assays, and LC–MS/MS quantification, we first find a role for PchHI as the heterodimeric ABC transporter involved in the siderophore-free iron uptake into the bacterial cytoplasm. We also provide the first evidence that PCH is able to reach the bacterial periplasm and cytoplasm when both FptA and FptX are expressed. Finally, we detected an interaction between PchH and FptX, linking the ABC transporter PchHI with the inner permease FptX in the PCH-Fe uptake pathway. These results pave the way for a better understanding of the PCH siderophore pathway, giving future directions to tackle P. aeruginosa infections.  相似文献   

8.
Phospholipids are well known for their membrane‐forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD‐deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin‐like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003‐deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.  相似文献   

9.
Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR-dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L-PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Deltalmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.  相似文献   

10.
We determined differences in the protein abundance among two isogenic strains of Mycobacterium tuberculosis (Mtb) with different Isoniazid (INH) susceptibility profiles. The strains were isolated from a pulmonary tuberculosis patient before and after drug treatment. LC‐MS/MS analysis identified 46 Mtb proteins with altered abundance after INH resistance acquisition. Protein abundance comparisons were done evaluating the different bacterial cellular fractions (membrane, cytosol, cell wall and secreted proteins). MS data have been deposited to the ProteomeXchange with identifier PXD002986.  相似文献   

11.
By using a functional approach of reconstituting detergent-solubilized membrane proteins into liposomes and following their function in patch-clamp experiments, we identified a novel mechanosensitive (MS) channel in the thermophilic cell wall-less archaeon Thermoplasma volcanium. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the enriched protein fractions revealed a band of approx 15 kDa comparable to MscL, the bacterial MS channel of large conductance. 20 N-terminal residues determined by protein microsequencing, matched the sequence to an unknown open reading frame in the genome of a related species Thermoplasma acidophilum. The protein encoded by the T. acidophilum gene was cloned and expressed in Escherichia coli and reconstituted into liposomes. When examined for function, the reconstituted protein exhibited properties typical of an MS ion channel: 1) activation by negative pressure applied to the patch-clamp pipet, 2) blockage by gadolinium, and 3) activation by the anionic amphipath trinitrophenol. In analogy to the nomenclature used for bacterial MS channels, the MS channel of T. acidophilum was termed MscTA. Secondary structural analysis indicated that similar to MscL, the T. acidophilum MS protein may have two transmembrane domains, suggesting that MS channels of thermophilic Archaea belong to a family of structurally related MscL-like ion channels with two membrane-spanning regions. When the mscTA gene was expressed in the mscL knockout strain and the MscTA protein reconstituted into liposomes, the gating of MscTA was charaterized by very brief openings of variable conductance. In contrast, when the mscTA gene was expressed in the wild-type mscL + strain of E. coli, the gating properties of the channel resembled MscL. However, the channel had reduced conductance and differed from MscL in its kinetics and in the free energy of activation, suggesting that MscTA and MscL can form functional complexes and/or modulate each other activity. Similar to MscL, MscTA exhibited an increase in activity in liposomes made of phospholipids having shorter acyl chain, suggesting a role of hydrophobic mismatch in the function of prokaryotic MS channels.  相似文献   

12.
Summary— We have previously demonstrated that intestinal and kidney finite cell lines were resistant to L monocytogenes invasion (ie allowed low bacterial entry and no intracellular multiplication) in contrast to the continuous cell lines which were susceptible to Listeria invasion (ie allowed high bacterial entry and intracellular multiplication) (Velge et al (1994a) Med Microbial Immunol 183, 145). The aim of this study was to discover whether epigenetic or genetic cellular modifications could convert L monocytogenes resistant cells into a susceptible phenotype and to determine the cellular steps involved in Listeria susceptibility. Among the 5-azacytidine treated finite cell lines, the untransformed immortal cell lines established remained resistant to L monocytogenes invasion whereas the weakly transformed continuous cell lines established were converted into a susceptible phenotype. Transfection of resistant cells by SV40 large T antigen induced only highly transformed continuous cell lines displaying a susceptible phenotype. Taken together these data show that cell transformation enhanced Listeria invasion. This conclusion was supported by the observation that L monocytogenes was able to induce cell foci within murine finite cell monolayers. This morphological cell transformation was completely reversible and required live bacteria inside cells. In conclusion, we may speculate that the L monocytogenes intracellular multiplication observed within cell foci could be explained by the loss of contact inhibition of the finite cell monolayer. Indeed, the loss of both contact inhibition and anchorage-dependent growth are the key steps involved in the L monocytogenes susceptibility phenotype.  相似文献   

13.
Invasive bacterial pathogens are engulfed upon host cell entry in a vacuolar environment called the bacteria‐containing vacuole (BCV). BCVs directly contact with numerous host compartments, mainly vesicles of the endocytic pathway, such as endosomes or lysosomes. In addition, they also interact with the endoplasmic reticulum and endomembranes of the secretory pathway. These connections between the pathogen and the host occur either through heterotypic membrane fusions or through membrane contact sites. The precise regulation of BCV contacts with host compartments defines the constitution of the intracellular bacterial niche. It emerges that the associated pathways may control the stability of the BCV resulting either in vacuolar or cytoplasmically growing bacteria. Here, we will portray how the usage of novel proteomics and imaging technologies allows comparison of the communication of different host cell compartments with four relevant intracellular human pathogens, namely Salmonella enterica, Legionella pneumophila, Shigella flexneri and Francisella tularensis. The first two remain mainly within the BCV, and the latter two escape into the cytoplasm.  相似文献   

14.
Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes.  相似文献   

15.
We investigated the mechanisms of two tryptophan-rich antibacterial peptides (KT2 and RT2) obtained in a previous optimization screen for increased killing of both Gram-negative and Gram-positive bacteria pathogens. At their minimal inhibitory concentrations (MICs), these peptides completely killed cells of multidrug-resistant, enterohemorrhagic pathogen Escherichia coli O157:H7 within 1–5 min. In addition, both peptides exhibited anti-biofilm activity at sub-MIC levels. Indeed, these peptides prevented biofilm formation and triggered killing of cells in mature E. coli O157:H7 biofilms at 1 μM. Both peptides bound to bacterial surface LPS as assessed using the dansyl-polymyxin displacement assay, and were able to interact with the lipids of liposomes as determined by observing a tryptophan blue shift. Interestingly, even though these peptides were highly antimicrobial, they did not induce pore formation or aggregates in bacterial cell membranes. Instead these peptides readily penetrated into bacterial cells as determined by confocal microscopy of labeled peptides. DNA binding assays indicated that both peptides bound to DNA with higher affinity than the positive control peptide buforin II. We propose that cationic peptides KT2 and RT2 bind to negatively-charged LPS to enable self-promoted uptake and, subsequently interact with cytoplasmic membrane phospholipids through their hydrophobic domains enabling translocation across the bacterial membrane and entry into cells within minutes and binding to DNA and other cytoplasmic membrane. Due to their dual antimicrobial and anti-biofilm activities, these peptides may find use as an alternative to (or in conjunction with) conventional antibiotics to treat acute infections caused by planktonic bacteria and chronic, biofilm-related infections.  相似文献   

16.
The htrB gene was discovered because its insertional inactivation interfered with Escherichia coli growth and viability at temperatures above 32.5°C, as a result of accumulation of phospholipids. The msbA gene was originally discovered because when cloned on a low-copy-number plasmid vector it was able to suppress the temperature-sensitive growth phenotype of an htrB null mutant as well as the accumulation of phospholipids. The msbA gene product belongs to the superfamily of ABC transporters, a universally conserved family of proteins characterized by a highly conserved ATP-binding domain. The msbA gene is essential for bacterial viability at all temperatures. In order to understand the physiological role of the MsbA protein, we mutated the ATP-binding domain using random PCR mutagenesis. Six independent mutants were isolated and characterized. Four of these mutations resulted in single-amino-acid substitutions in non-conserved residues and were able to support cell growth at 30°C but not at 43°C. The remaining two mutations behaved as recessive lethals, and resulted in single-amino-acid substitutions in Walker motif B, one of the two highly conserved regions of the ATP-binding domain. Despite the fact that neither of these two mutant proteins can support E. coli growth, they both retained the ability to bind ATP in vitro. In addition, we present evidence to show that W-acetyl [3H]-glucosamine, a precursor of lipopolysaccharides, accumulates at the non-permissive temperature in the inner membrane of either htrB null or msbA conditional lethal strains. Translocation of the precursor to the outer membrane is restored by transformation with a plasmid containing the wild-type msbA gene. A possible role for MsbA  相似文献   

17.
脂肪酸不仅是细菌细胞膜组分,还是许多生物活性物质的合成原料。不饱和脂肪酸(unsaturated fatty acid, UFA)具有更低的相变温度,是细菌调节细胞膜流动性的重要分子,因此UFA合成途径是重要的抗菌药物筛选靶点。细菌可利用厌氧途径合成UFA,其中模式生物大肠杆菌利用经典的FabA-FabB途径合成UFA,但不同细菌中UFA合成的厌氧途径具有多样性,相关催化酶类也不尽相同;细菌还可以利用需氧途径合成UFA,利用脂肪酸脱饱和酶直接将饱和脂肪酸(saturated fatty acid, SFA)转化为不饱和脂肪酸,而不同脱饱和酶会生成不同结构的UFA,在逆境耐受、致病力等多方面发挥重要作用;细菌还可以利用单加氧酶,将脂肪酸合成途径中癸酰酰基载体蛋白(acyl carrier protein, ACP)转化为顺-3-癸烯酰ACP,并最终合成UFA。细菌脂肪酸合成相关的其他酶类在UFA合成或不同种类UFA调节中也发挥着重要作用。本文系统地总结了细菌UFA合成途径与相关酶类的多样性研究进展,旨在为进一步了解细菌UFA合成机制,并以此为靶点开发抗菌药物等方面提供理论支撑。  相似文献   

18.
Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer‐membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer‐membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB‐dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT‐PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment.  相似文献   

19.
The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 μg/ml SNPs could completely inhibit the growth of 107 cfu/ml E. coli cells in liquid Mueller–Hinton medium. Meanwhile, SNPs resulted in the leakage of reducing sugars and proteins and induced the respiratory chain dehydrogenases into inactive state, suggesting that SNPs were able to destroy the permeability of the bacterial membranes. When the cells of E. coli were exposed to 50 μg/ml SNPs, many pits and gaps were observed in bacterial cells by transmission electron microscopy and scanning electron microscopy, and the cell membrane was fragmentary, indicating the bacterial cells were damaged severely. After being exposed to 10 μg/ml SNPs, the membrane vesicles were dissolved and dispersed, and their membrane components became disorganized and scattered from their original ordered and close arrangement based on TEM observation. In conclusion, the combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.  相似文献   

20.
【目的】探究典型盐生药用植物野生乌拉尔甘草在不同盐渍化生境下土壤细菌群落多样性、组成和功能特征,有助于建立土壤盐分与甘草生长发育、药材品质形成相关的微生物组之间的联系,对栽培甘草药材品质提高具有重要意义。【方法】从野生乌拉尔甘草的6个主分布区采集原生境土壤,采用高通量测序技术比较非盐渍(un-salinization, US)、轻度盐渍(light salinization, LS)、中度盐渍(moderate salinization, MS)以及重度盐渍(heavy salinization, HS)生境中土壤细菌群落多样性、组成及功能的差异,并挖掘不同生境中优势细菌。【结果】野生乌拉尔甘草原生境土壤细菌群落丰富度和多样性在轻度盐渍(LS)组和中度盐渍(MS)组中明显高于非盐渍(US)组、重度盐渍(HS)组,且重度盐渍(HS)组最低。主成分分析(principal component analysis, PCA)表明不同盐渍程度组间的野生乌拉尔甘草土壤细菌群落组成和功能具有显著差异(P<0.05);冗余分析(redundancy analysis, RDA)表明,土壤盐分(total salt, TS)既是影响原生境土壤细菌群落组成也是影响群落功能的重要因子。属水平,非盐渍(US)组和轻度盐渍(LS)组中的显著优势细菌相同,均为植物有益菌,包括类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、栖大理石菌属(Marmoricola);重度盐渍(MS)组中显著优势属既包括有益菌未鉴定_酸杆菌属(unidentified_Acidobacteria),也包括嗜盐菌盐单胞菌属(Halomonas)、海杆菌属(Marinobacter);重度盐渍(HS)组中显著优势细菌以嗜盐菌或耐盐菌为主,包括盐单胞菌属(Halomonas)、海杆菌属(Marinobacter)、楚帕氏菌属(Truepera)、别样矿生菌属(Aliifodinibius)、盐坑微菌属(Salinimicrobium)和需盐杆菌属(Salegentibacter)。PICRUSt功能预测分析强调非盐渍(US)组、轻度盐渍(LS)组和中度盐渍(MS)组中的土壤细菌群落与植物互作方面的潜力,表明非盐渍、轻度盐渍和中度盐渍生境中的有益菌对野生乌拉尔甘草生长发育、品质形成具有重要影响。PICRUSt功能预测同时也强调了重度盐渍(HS)组在自我修复适应高盐环境以及参与野生乌拉尔甘草耐盐性提高方面具有潜能,表明重度盐渍生境中的嗜盐菌和耐盐菌对乌拉尔甘草抗盐能力具有重要作用。中度盐渍生境兼具以上二者优势菌群的特征,是值得关注的类型。【结论】野生乌拉尔甘草土壤细菌群落多样性和丰富度在轻度盐渍和中度盐渍生境中明显高于非盐渍和重度盐渍生境;细菌群落的组成和功能在非盐渍和轻度盐渍生境中具有相似性,并与重度盐渍生境存在显著差异,中度盐渍生境兼具以上二者的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号