首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

2.
A cDNA encoding a novel laccase from the white-rot fungus Trametes trogii was cloned and expressed in Pichia pastoris. The recombinant protein (Lcc2) exhibited kinetic parameters for both phenolic and non phenolic substrates that were different from the previously described Lcc1, the main laccase isoform expressed by T. trogii; in addition, the pH/activity profiles for phenolic substrates of Lcc2 were shifted upward by 1–1.5 pH units towards neutrality as compared to Lcc1. Comparative modeling of the two laccases (69.2% identity) showed that the overall fold of Lcc2 is very similar to Lcc1 and other laccases. The substrate cavity of Lcc2 contains the Asp residue which is thought to mediate the laccase activity at acidic pHs, whereas two hydrophobic residues (Phe, Ile) on the cavity orifice of Lcc2 replace the two polar residues (Thr, Ser) of Lcc1. These structural differences may be responsible for the unique kinetic performances of Lcc2.  相似文献   

3.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent Km of 21 ± 2 μM and a catalytic constant of 200 ± 10 min−1 for O2 with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

4.
The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL?1 at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5–4.5 U mL?1). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC–MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium.  相似文献   

5.
Summary An ascomycete Monocillium indicum Saxena producing extracellular laccase was isolated. The culture filtrate on native polyacrylamide gel electrophoresis (PAGE) revealed four bands of activity, one of which was a major one. The major laccase band, a glycoprotein, was purified and characterized. Gel filtration chromatography showed that the relative molecular weight (Mr) of laccase was 100 000. On sodium dodecyl sulphate (SDS)-PAGE the major laccase band further resolved into three proteins of Mr 72 000, 56 000 and 24 000. The enzyme had a pH optimum of 3.0 and was active on a number of o-phenols and aromatic acids. The 72 000 Mr protein was found to share common immunological properties with laccases of Coriolus versicolor, Agaricus bisporus and lignin peroxidase of Phanerochaete chrysosporium. Correspondence to: K. Koteswara Rao  相似文献   

6.
A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETαA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae α-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the α-factor signal peptide was 9.79 U ml−1. The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.  相似文献   

7.
A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K m values of 8 μM (ABTS) and 80 μM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k cat/k m (s−1 mM−1). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.  相似文献   

8.
The white-rot basidomycete Lentinula edodes often produces the lignin-degrading enzymes manganese peroxidase (MnP; EC 1.11.1.13) and laccase (Lcc; EC 1.10.3.2) in sawdust-based media. In the present study, MnP from L. edodes was induced under liquid culture supplemented with sawdust extracts of Castanopsis cuspidata. Lcc activity was induced by the addition of 2 mM CuSO4·5H2O into the same media 7 days after initial inoculation. Phenoloxidase enzymes were distinguished by polyacrylamide gel electrophoresis (native-PAGE), followed by sequential enzymatic staining with an improved staining solution. The isozyme bands detected under MnP-induced conditions were identified as manganese peroxidase (lemnp2) and bands detected under Lcc-induced conditions were identified as laccase (lcc1) by Q-TOF mass spectrometry.  相似文献   

9.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent K(m) of 21 +/- 2 microM and a catalytic constant of 200 +/- 10 min(-1) for O(2) with 2, 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

10.
 An extracellular laccase capable of oxidizing ABTS (the diammonium salt of 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) was detected in ligninolytic cultures of Penicillium chrysogenum. By contrast, no lignin peroxidase, manganese-dependent peroxidase or aryl-alcohol oxidase was detected at any time during culturing. Both ABTS laccase activity and mineralization of dehydrogenative polymerizate of coniferyl alcohol were regulated by the C/N ratio in the medium and partially inhibited in the presence of thioglycolic acid, suggesting that both events are associated. In the presence of several known laccase inducers neither ABTS laccase activity nor mineralization rates were enhanced. However, a new laccase was detected in P. chrysogenum, able to oxidize 2,6-dimethoxyphenol but not involved in lignin mineralization. Studies with the known ligninolytic basidiomycete Trametes villosa suggest that lignin degradation by this fungus also involves the action of laccase. Received: 6 July 1995/Received revision: 28 October 1995/Accepted: 6 November 1995  相似文献   

11.
《Mycoscience》2019,60(4):246-249
Lentinula edodes secretes laccase (Lcc: EC 1.10.3.2), an industrially useful enzyme. In this study, we introduced and expressed the L. edodes Lcc gene, lcc1, driven by L. edodes glyceraldehyde-3-phosphate dehydrogenase gene promoter into L. edodes. The resulting transformants showed 2-fold Lcc activity than that of the host strain, and expression of the recombinant lcc1 was confirmed by RT-PCR.  相似文献   

12.
Summary The present work reports the production of laccase, lignin peroxidase and manganese peroxidase by the little studied white-rot fungus Phlebia floridensis under a variety of nutritional and physicochemical conditions. Among the different media and supplements the highest yields of laccase, lignin peroxidase and manganese peroxidase were recorded in the presence of sugarcane bagasse, wheat straw and rice straw, respectively. Laccase and manganese peroxidase activities were best expressed at a pH of 4.5 while lignin peroxidase was optimally active at a lower pH. Laccase proved to be much more thermostable as compared to the other two enzymes.  相似文献   

13.
An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

14.
Laccases are versatile biocatalysts for the bioremediation of various xenobiotics, including dyes and polyaromatic hydrocarbons. However, current sources of new enzymes, simple heterologous expression hosts and enzymatic information (such as the appropriateness of common screening substrates on laccase engineering) remain scarce to support efficient engineering of laccase for better “green” applications. To address the issue, this study began with cloning the laccase family of Lentinula edodes. Three laccases perfectio sensu stricto (Lcc4A, Lcc5, and Lcc7) were then expressed from Pichia pastoris, characterized and compared with the previously reported Lcc1A and Lcc1B in terms of kinetics, stability, and degradation of dyes and polyaromatic hydrocarbons. Lcc7 represented a novel laccase, and it exhibited both the highest catalytic efficiency (assayed with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS]) and thermostability. However, its performance on “green” applications surprisingly did not match the activity on the common screening substrates, namely, ABTS and 2,6-dimethoxyphenol. On the other hand, correlation analyses revealed that guaiacol is much better associated with the decolorization of multiple structurally different dyes than are the two common screening substrates. Comparison of the oxidation chemistry of guaiacol and phenolic dyes, such as azo dyes, further showed that they both involve generation of phenoxyl radicals in laccase-catalyzed oxidation. In summary, this study concluded a robust expression platform of L. edodes laccases, novel laccases, and an indicative screening substrate, guaiacol, which are all essential fundamentals for appropriately driving the engineering of laccases towards more efficient “green” applications.  相似文献   

15.
The oxidoreductive enzyme laccase (E.C.1.10.3.2.) isolated from a culture medium of white-rot fungus Trametes versicolor transformed lignin preparations solubilized in a dioxane-H2O (7:3) mixture. The obvious net result of lignin transformation was an increase in molecular mass. A superoxide radical was found in the reaction mixture during lignin incubation with laccase. It appeared that a change in the reaction medium or in the lignin molecule instigated by laccase could lead to polymerization after the lignin molecules had crossed a dialysis membrane and were separated from the enzyme. Two possible mechanisms are suggested, either diffusion of an activated oxygen species or diffusion of primed lignin molecules. Laccase was able to co-polymerize lignin with low-molecular-mass compounds of different origins, particularly with aromatics containing either carboxyl or isocyanate groups, as well as acrylamide — an aliphatic monomer containing a vinyl group. Correspondence to: O. Milstein  相似文献   

16.
Increasing demand for efficient and environmentally benign oxidation technologies has resulted in a focus on the use of oxidoreductases. Laccases and tyrosinases, which utilize molecular oxygen and produce water as by-product, are particularly attractive. Simultaneous production of laccase and tyrosinase was studied in Neurospora crassa FGSC #321 as the fungal strain which has the ability to produce tyrosinase intracellularly while producing laccase extracellularly. Using one-variable-at-a-time experiments and a Taguchi orthogonal L9 array demonstrated that a Vogel minimal medium containing 2.5% sucrose at pH 6.5 and 25?°C with no agitation or oxygen purging were the optimum conditions for N. crassa FGSC #321 growth. Conditions were adjusted to obtain the highest laccase and tyrosinase production. Results indicate that the control mechanisms for the production of both enzymes in N. crassa FGSC #321 are similar but not necessarily identical. Results revealed that transferring the harvested cells from the growth medium into the phosphate buffer (pH 6.8, 0.1M) containing cycloheximide (2?μM) and fluorouracil (2?mM) and increasing the temperature to 30?°C were the best conditions for simultaneous production of laccase and tyrosinase (1278 and 410?U/g of biomass, respectively). Nonetheless, starvation at 35?°C is proposed as the most cost-effective means for inducing laccase. The N. crassa laccase was characterized by using its molecular weight, pI value, optimal pH and temperature and stability.  相似文献   

17.
Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 μM Cu over the basal level (1.6 μM Cu) and peak levels observed at 300 μM Cu were 7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r 70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct laccase protein band (M r 45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. Using 2,2′-azino-bis(ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate, the optimal temperature and pH values for laccase activity were 65°C and pH 2.2, respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

18.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

19.
Liang M  Davis E  Gardner D  Cai X  Wu Y 《Planta》2006,224(5):1185-1196
Laccase, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductase, has been proposed to be involved in lignin synthesis in plants based on its in vitro enzymatic activity and a close correlation with the lignification process in plants. Despite many years of research, genetic evidence for the role of laccase in lignin synthesis is still missing. By screening mutants available for the annotated laccase gene family in Arabidopsis, we identified two mutants for a single laccase gene, AtLAC15 (At5g48100) with a pale brown or yellow seed coat which resembled the transparent testa (tt) mutant phenotype. A chemical component analysis revealed that the mutant seeds had nearly a 30% decrease in extractable lignin content and a 59% increase in soluble proanthocyanidin or condensed tannin compared with wild-type seeds. In an in vitro enzyme assay, the developing mutant seeds showed a significant reduction in polymerization activity of coniferyl alcohol in the absence of H2O2. Among the dimers formed in the in vitro assay using developing wild-type seeds, 23% of the linkages were β-O-4 which resembles the major linkages formed in native lignin. The evidence strongly supports that AtLAC15 is involved in lignin synthesis in plants. To our knowledge, this is the first genetic evidence for the role of laccase in lignin synthesis. Changes in seed coat permeability, seed germination and root elongation were also observed in the mutant.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
The laccase genes lccα, lccβ, lccγ and lccδ encoding four isoenzymes from Trametes versicolor have been cloned and expressed in Pichia pastoris. Biochemical characterization allowed classification of these laccases into two distinct groups: Lccα and Lccβ possessed higher thermal stability, but lower catalytic activity towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) compared to Lccγ and Lccδ. Activities of the laccases were quite different as well. Laccase Lccδ showed highest phenolic C-C coupling activity with sinapic acid, but lowest oxidizing activity towards polycyclic aromatic hydrocarbons (PAHs). Highest activity towards PAHs was observed with Lccβ. After 72 h, more than 80% of fluorene, anthracene, acenaphthene and acenaphthylene were oxidized by Lccβ in the presence of ABTS. Investigation of the structural basis of the different activities of the laccases demonstrated the impact of positions 164 and 265 in the substrate binding site on oxidation of PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号