首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 ± 0.02 h−1 and 5.58 ± 0.6 h−1 in batches with initial concentrations of 10 and 50 mg L−1 Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L−1 diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg−1 Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.  相似文献   

2.
Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd–Pd, Pd–O and Pd–S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki–Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.  相似文献   

3.
The catalytic hydrogenation of 1,10-phenanthroline (Phen) or 2,9-dimethyl-1,10-phenanthroline (DMPhen) has been achieved using silica-supported palladium nanoparticles (Pd/SiO2) with metal contents of 1.98 or 9.95 wt%. With either catalyst, the hydrogenation regiochemistry has been effectively controlled by the reaction temperature. The catalyst with the higher metal content was selective for the hydrogenation of one heterocyclic ring of either substrate at 80 °C and for both external rings at 130 °C for Phen and at 160 °C for DMPhen. The catalyst with the lower metal content was more active and exhibited comparable selectivity.  相似文献   

4.
Bacteria can fabricate platinum group metal (PGM) catalysts cheaply, a key consideration of industrial processes and waste decontaminations. Biorecovery of PGMs from wastes is promising but PGM leachates made from metallic scraps are acidic. A two‐step biosynthesis ‘pre‐seeds’ metallic deposits onto bacterial cells benignly; chemical reduction of subsequent metal from acidic solution via the seeds makes bioscaffolded nanoparticles (NPs). Cells of Escherichia coli were seeded using Pd(II) or Pt(IV) and exposed to a mixed Pd(II)/Pt(IV) model solution under H2 to make bimetallic catalyst. Its catalytic activity was assessed in the reduction of Cr(VI), with 2 wt% or 5 wt% preloading of Pd giving the best catalytic activity, while 1 wt% seeds gave a poorer catalyst. Use of Pt seeds gave less effective catalyst in the final bimetallic catalyst, attributed to fewer and larger initial seeds as shown by electron microscopy, which also showed a different pattern of Pd and Pt deposition. Bimetallic catalyst (using cells preloaded with 2 wt% Pd) was used in the hydrogenation of soybean oil which was enhanced by ~fourfold using the bimetallic catalyst made from a model waste solution as compared to 2 wt% Pd preloaded cells alone, with a similar selectivity to cis C18:1 product as found using a Pd‐Al2O3 commercial catalyst.  相似文献   

5.
Usage of magnetic resonance imaging (MRI) is continuously increasing due to its excellent soft-tissue contrast and improving diagnostic values. MRI also has the advantage that it operates without ionizing radiation. The main safety concerns are torque, acceleration by the static field, nerve stimulation by the gradient fields, and tissue heating by the radio-frequency (RF) fields. This paper investigates if children and fetuses are at higher risks than adults when the current RF regulations are applied. We analyzed and compared local absorption hotspots, i.e., the peak spatial specific absorption rate averaged over any 10 g (psSAR10g) for five adults, three children of ages 5, 11 and 14 years, and 1 pregnant female (36 weeks’ gestation) in 10 different Z-positions (head to calves). In the First Level Operating Mode (4 W/kg whole-body averaged exposure), the psSAR10g values found for adults were as large as 60 W/kg in the trunk and 104 W/kg in the extremities. The corresponding values for children were 43 and 58 W/kg, respectively, and 14 W/kg for the unborn child. Modeling of worst case anatomical RF loops can substantially increase the psSAR10g values, i.e., by factor >>2.The results suggest that local exposure for children and fetuses is smaller than for adults (15–75%), i.e., no special considerations for children and the unborn child are needed regarding psSAR10g due to RF. However, the local thermal load of the unborn may be significantly increased due to the high exposure average (up to 4 W/kg) of the non-perfused amniotic fluid.  相似文献   

6.
Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO3) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml−1) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ratio of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size. These results demonstrate the technical feasibility of combining in one reactor the volatile fatty acid production by anaerobic digestion with chemical catalyst-mediated reductions, using the valuable by-product hydrogen.  相似文献   

7.
The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by “bulk” ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd2+ concentration, biomass and partial H2 pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell−1) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 105 ± 3 × 104 cells μl−1) and H2 partial pressure (180 ml H2). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 104 ± 10 × 102 cells μl−1) and H2 partial pressure (10–100 ml H2). The influence of the H2 partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.  相似文献   

8.

The acidophilic, Fe(III)-reducing heterotrophic bacteria Acidocella aromatica PFBCT and Acidiphilium cryptum SJH were utilized to produce palladium (Pd) bionanoparticles via a simple 1-step microbiological reaction. Monosaccharide (or intracellular NADH)-dependent reactions lead to visualization of intra/extra-cellular enzymatic Pd(0) nucleation. Formic acid-dependent reactions proceeded via the first slow Pd(0) nucleation phase and the following autocatalytic Pd(II) reduction phase regardless of the presence or viability of the cells. However, use of active cells (with full enzymatic and membrane protein activities) at low formic acid concentration (5 mM) was critical to allow sufficient time for Pd(II) biosorption and the following enzymatic Pd(0) nucleation, which consequently enabled production of fine, dense and well-dispersed Pd(0) bionanoparticles. Differences of the resultant Pd(0) nanoparticles in size, density and localization between the two bacteria under each condition tested suggested different activity and location of enzymes and membrane “Pd(II) trafficking” proteins responsible for Pd(0) nucleation. Despite the inhibitory effect of leaching lixiviant and dissolved metal ions, Pd(0) bionanoparticles were effectively formed by active Ac. aromatica cells from both acidic synthetic Pd(II) solutions and from the actual spent catalyst leachates at equivalent 18–19 nm median size with comparable catalytic activity.

  相似文献   

9.
The aim of our study is to evaluate the possible biological effects of whole-body 1800 MHz GSM-like radiofrequency (RF) radiation exposure on liver oxidative DNA damage and lipid peroxidation levels in nonpregnant, pregnant New Zealand White rabbits, and in their newly borns. Eighteen nonpregnant and pregnant rabbits were used and randomly divided into four groups which were composed of nine rabbits: (i) Group I (nonpregnant control), (ii) Group II (nonpregnant-RF exposed), (iii) Group III (pregnant control), (iv) Group IV (pregnant-RF exposed). Newborns of the pregnant rabbits were also divided into two groups: (v) Group V (newborns of Group III) and (vi) Group VI (newborns of Group III). 1800 MHz GSM-like RF radiation whole-body exposure (15 min/day for a week) was applied to Group II and Group IV. No significant differences were found in liver 8 OHdG/106 dG levels of exposure groups (Group II and Group IV) compared to controls (Group I and Group III). However, in Group II and Group IV malondialdehyde (MDA) and ferrous oxidation in xylenol orange (FOX) levels were increased compared to Group I (P < 0.05, Mann–Whitney). No significant differences were found in liver tissue of 8 OHdG/106 dG and MDA levels between Group VI and Group V (P > 0.05, Mann–Whitney) while liver FOX levels were found significantly increased in Group VI with respect to Group V (P < 0.05, Mann–Whitney). Consequently, the whole-body 1800 MHz GSM-like RF radiation exposure may lead to oxidative destruction as being indicators of subsequent reactions that occur to form oxygen toxicity in tissues.  相似文献   

10.
Biosynthesis of nano-scale platinum and palladium was achieved via enzymatically-mediated deposition of metal ions from solution. The bio-accumulated Pt(0) and Pd(0) crystals were dried, applied onto carbon paper and tested as anodes in a polymer electrolyte membrane (PEM) fuel cell for power production. Up to 100% and 81% of the maximum power generation was achieved by the bio-Pt and bio-Pd catalysts, respectively, compared to commercial fuel cell grade Pt catalyst. Hence, biomineralisation could pave the way for economical production of fuel cell catalysts since previous studies have shown that precious metals can be biorecovered from wastes into catalytically active bionanomaterials.  相似文献   

11.
A method is reported for the modification of lipids in situ in chloroplast membrane by which a homogeneous, water-soluble catalyst Pd(QS)2 (QS, sulphonated alizarine; C14H6O7NaS) is incorporated into the thylakoids of isolated chloroplast. The catalyst itself did not affect the photosynthetic activity but caused an extensive loss of unsaturated fatty acids in the presence of hydrogen gas. The polyunsaturated fatty acids were hydrogenated at a faster rate than the monoenoic acids. During hydrogenation the orientational ordering of membrane lipids, as measured with the C-12 positional isomer of spin-labelled stearic acid, displayed a slight increase in agreement with the alterations in membrane composition. Progressive saturation of double bonds of lipids primarily inhibits electron transport between the photosystems followed by the inhibition of electron flow around photosystem II. Photosystem I electron transport was not inhibited even by 50% fatty acid hydrogenation. We suggest that using Pd(QS)2 catalyst for thylakoid hydrogenation offers an excellent technique to study the role of various unsaturated fatty acids in the regulation of membrane fluidity and photosynthetic processes.  相似文献   

12.
Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H2 and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials (‘Bio-Pd’) were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H2. Both strains produced hydrogen and OAs but ‘palladised’ cells of strain IC007 (Bio-PdIC007) produced ~threefold more power as compared to Bio-PdMC4100 (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.  相似文献   

13.
 Dipeptides and tripeptides AcMet-aaH containing N-acetyl methionine, in which the group aaH is GlyH, AlaH, ValH, or Gly-GlyH, undergo hydrolytic cleavage of the Met-aaH peptide bond in the presence of the following complexes of palladium(II): cis-[Pd(en)(H2O)2]2+, cis-[Pd(tn)(H2O)2]2+, cis-[Pd(en)(CH3OH)2]2+, cis-[Pd(S,N-MetH)(H2O)2]2+, cis-[Pd(S,N-Met-GlyH)(H2O)2]2+, and cis-[Pd(S,N-Met-AlaH)(H2O)2]2+. These mononuclear complexes are precursors of binuclear palladium(II) complexes containing the substrates AcMet-aaH as bridging thioether ligands. The rate constant for cleavage is higher when the bidentate ligand in the precursor complex is ethylenediamine (which is completely displaced) than S,N-methionine (of which only the amino group is displaced), because the number of aqua ligands available for cleavage is greater in the former than in the latter case. The demonstrated dependence of the rate constant on the steric bulk (volume) of the leaving group, aaH, points the way toward achieving a degree of sequence selectivity in cleavage of peptide bonds by palladium(II) aqua complexes. One equivalent of cis-[Pd(en)(H2O)2]2+ cleaves as many as ten equivalents of AcMet-GlyH, but the rate constant decreases as the molar excess of the dipeptide over the catalyst increases. This demonstration of catalytic turnover points the way to our ultimate goal – artificial metallopeptidases. Received: 13 June 1997 / Accepted: 24 September 1997  相似文献   

14.
Trichloroethylene (TCE) is a toxic and recalcitrant groundwater pollutant. An innovative technology using microbial produced Pd(0) nanoparticles for the remediation of TCE contaminated groundwater was developed. The nanoscale bio-Pd particles were precipitated on the biomass of Shewanella oneidensis and hydrogen gas, formate, or formic acid were used as hydrogen donors. Ethane turned out to be the only organic degradation product and no intermediate chlorinated reaction products were detected. Subsequently bio-Pd was implemented in a plate membrane reactor (MR) for the treatment of water containing TCE. In a continuous MR system, containing 50 mg L(-1) bio-Pd, removal rates up to 2,515 mg TCE day(-1) g(-1) Pd were achieved with H(2) gas as hydrogen donor. The measured chloride mass balance confirmed the removal rates. This work shows that a complete, efficient and rapid removal of TCE was achieved with bio-Pd and that a MR system containing bio-Pd and supplied with hydrogen gas offers an alternative for the current remediation technologies of water contaminated with TCE.  相似文献   

15.
PurposeTo simulate radiofrequency (RF) burns that frequently occur at skin–skin and skin–bore wall contact points.MethodsRF burn injuries (thumb–thigh and elbow–bore wall contacts) that typically occur on the lateral side of the body during 1.5 T magnetic resonance imaging (MRI) scans were simulated using a computational human model. The model was shifted to investigate the influence of the position of the patient in an MRI scanner. The specific absorption rate (SAR), electric field, and temperature were mapped.ResultsRegarding the contact points located near the edge of the birdcage transmission coil, under the allowable maximum RF power exposure i.e., the average whole-body SAR at the safety limit value (2 W/kg), the 10-g-tissue-averaged SAR (SAR10g) at those points significantly increased for both the thumb–thigh (180 W/kg) and elbow–bore wall (48 W/kg) cases. Both values significantly exceeded the highest safety limit of the partial-body SAR (10 W/kg). The electric field, the square of which is proportional to SAR, was remarkably high near the edge of the birdcage transmission coil. The peak SAR10g for each injury case was associated with contact-point peak temperatures that reached 52 °C at approximately 1 min following RF exposure onset; a 1-min period of exposure to this temperature causes a first-degree burn.ConclusionsWe demonstrated high heat generation in RF burn injury cases in silico. The RF heating occurring on the lateral side of the body was strongly dependent on the electric field distribution, which is dominantly determined by an RF transmission coil.  相似文献   

16.
1H NMR spectroscopy was applied to study the reactions of cis-[Pd(L)(H2O)2]2+ complexes (L is en, pic and dpa) with the N-acetylated tripeptides L-methionylglycylglycine, MeCOMet–Gly–Gly, and glycyl–L-methionyl–glycine, MeCOGly–Met–Gly. All reactions were performed in the pH range 2.0–2.5 with equimolar amounts of the cis-[Pd(L)(H2O)2]2+ complex and the tripeptide at 60 °C. The hydrolytic reactions of the cis-[Pd(en)(H2O)2]2+, cis-[Pd(pic)(H2O)2]2+ and cis-[Pd(dpa)(H2O)2]2+ complexes with MeCOMet–Gly–Gly were regioselective and only the amide bond involving the carboxylic group of methionine was cleaved. However, in the reactions of these three Pd(II) complexes with MeCOGly–Met–Gly, two amide bonds, Met–Gly and MeCO–Gly, were cleaved. From UV–Vis spectrophotometry studies, it was found that the rate-determining step of these hydrolytic reactions is the monodentate coordination of the corresponding Pd(II) complex to the sulfur atom of the methionine side chain. The rate of the cleavage of these amide bonds is dependent on the nature of the bidentate coordinated diamine ligand L (en > pic > dpa). The hydrolytic reaction of cis-[Pd(L)(H2O)2]2+-type complexes with MeCOMet–Gly–Gly, containing the methionine side chain in the terminal position of the peptide, is regioselective while in the reaction of these Pd(II) complexes with MeCOGly–Met–Gly, none selective cleavage of the peptide occurs. This study contributes to a better understanding of the selective cleavage of methionine-containing peptides employing palladium(II) complexes as catalysts.  相似文献   

17.
Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried ‘Bio-Pd’ materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd D. desulfuricans (positive control) and Bio-Pd E. coli (negative control) was ~140 and ~30 mW respectively. Bio-Pd C. metallidurans was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This ‘Bio-precious metal’ (‘Bio-PM’) gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd D. desulfuricans when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.  相似文献   

18.
The pattern of hydrogenation of polar lipids of pea chloroplasts incubated in the presence of the homogeneous catalyst Pd(QS)2, a sulphonated alizarine complex of Pd(II) has been examined. Analysis of the fatty acyl residues of the major lipid classes from chloroplast suspensions at intervals during incubation under hydrogenating conditions showed that susceptibility to hydrogenation increased in the order monogalactosyldiacylglycerol > digalactosyldiacylglycerol > sulphoquinovosyldiacylglycerol > phosphatidylglycerol. Almost 80% of the total number of double bonds in the polar lipids were removed after 2-h incubation under the conditions employed. The consequence of hydrogenation on the phase behaviour of total polar lipid extracts in aqueous dispersions were examined by freeze-fracture electron microscopy, X-ray diffraction and differential scanning calorimetry. These data indicate that progressive hydrogenation of tne lipids in situ produce a change in the organisation of the lipid when dispersed in water. Single bilayer vesicles are converted to large aggregates of planar bilayer stacks in which the hydrocarbon chains are predominantly in the gel phase configuration. Studies of lipids dispersed in 20 mM MgCl2 suggest that cohesion between the hydrocarbon chains gradually ameliorates the repulsive effects of the charged lipids, sulphoquinovosyldiacylglycerol and phosphatidylglycerol. This results in the formation of a sheet-like lamellar phase characteristic of dispersions of saturated monogalactosyldiacylglycerols which dominates the total polar lipid extracts of pea chloroplasts.  相似文献   

19.
This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.  相似文献   

20.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd0), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd0, immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd0 and `chemical Pd0' were packed into continuous-flow reactors, and challenged with a solution containing 100 m Cr(VI) (pH 7) at a flow rate of 2.4 ml h–1. Agar-immobilized chemical Pd0 columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd0 maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号