首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom‐injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom.  相似文献   

3.
Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agents. Most of them carry virulence and other factors that modify host physiology and immunity. Analysis of Drosophila wasps is providing insights into how species-specific interactions shape the genetic structures of natural communities. These studies also serve as a model for understanding the hosts'' immune physiology and how coordinated immune reactions are thwarted by this class of parasites.The larval/pupal cuticle serves as the first line of defense. The wasp ovipositor is a sharp needle-like structure that efficiently delivers eggs into the host hemocoel. Oviposition is followed by a wound healing reaction at the cuticle (Fig. 1C, arrowheads). Some wasps can insert two or more eggs into the same host, although the development of only one egg succeeds. Supernumerary eggs or developing larvae are eliminated by a process that is not yet understood. These wasps are therefore referred to as solitary parasitoids.Depending on the fly strain and the wasp species, the wasp egg has one of two fates. It is either encapsulated, so that its development is blocked (host emerges; Fig. 2 left); or the wasp egg hatches, develops, molts, and grows into an adult (wasp emerges; Fig. 2 right). L. heterotoma is one of the best-studied species of Drosophila parasitic wasps. It is a "generalist," which means that it can utilize most Drosophila species as hosts1. L. heterotoma and L. victoriae are sister species and they produce virus-like particles that actively interfere with the encapsulation response2. Unlike L. heterotoma, L. boulardi is a specialist parasite and the range of Drosophila species it utilizes is relatively limited1. Strains of L. boulardi also produce virus-like particles3 although they differ significantly in their ability to succeed on D. melanogaster1. Some of these L. boulardi strains are difficult to grow on D. melanogaster1 as the fly host frequently succeeds in encapsulating their eggs. Thus, it is important to have the knowledge of both partners in specific experimental protocols.In addition to barrier tissues (cuticle, gut and trachea), Drosophila larvae have systemic cellular and humoral immune responses that arise from functions of blood cells and the fat body, respectively. Oviposition by L. boulardi activates both immune arms1,4. Blood cells are found in circulation, in sessile populations under the segmented cuticle, and in the lymph gland. The lymph gland is a small hematopoietic organ on the dorsal side of the larva. Clusters of hematopoietic cells, called lobes, are arranged segmentally in pairs along the dorsal vessel that runs along the anterior-posterior axis of the animal (Fig. 3A). The fat body is a large multifunctional organ (Fig. 3B). It secretes antimicrobial peptides in response to microbial and metazoan infections.Wasp infection activates immune signaling (Fig. 4)4. At the cellular level, it triggers division and differentiation of blood cells. In self defense, aggregates and capsules develop in the hemocoel of infected animals (Fig. 5)5,6. Activated blood cells migrate toward the wasp egg (or wasp larva) and begin to form a capsule around it (Fig. 5A-F). Some blood cells aggregate to form nodules (Fig. 5G-H). Careful analysis reveals that wasp infection induces the anterior-most lymph gland lobes to disperse at their peripheries (Fig. 6C, D).We present representative data with Toll signal transduction pathway components Dorsal and Spätzle (Figs. 4,5,7), and its target Drosomycin (Fig. 6), to illustrate how specific changes in the lymph gland and hemocoel can be studied after wasp infection. The dissection protocols described here also yield the wasp eggs (or developing stages of wasps) from the host hemolymph (Fig. 8).  相似文献   

4.
Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species‐specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade‐offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade‐off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade‐off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits.  相似文献   

5.
The endoparasitoid wasp Asobara japonica has highly poisonous venom: the host Drosophila larvae are killed by envenomation at a dose that is naturally injected by the female wasp at parasitism. This insecticidal venom is neutralized, however, because A. japonica introduces lateral oviduct components soon after venom injection at oviposition. Although the venom and lateral oviduct components of this parasitoid have been partially characterized, how the venom components favor successful development of wasp eggs and larvae in the host remains ambiguous. Here, we demonstrated that A. japonica venom did not affect host humoral immune responses, determined as expression of antimicrobial peptide (AMP) genes, but significantly diminished two cellular responses, spreading and phagocytosis, by host hemocytes. Moreover, venom components drastically elevated a serine protease‐like activity 4 h after its injection. The lateral oviduct components did not negate the detrimental effects of the venom on host cellular immunities, but significantly reduced the venom‐induced elevation of protease activity. Both active factors in venom and lateral oviduct components were roughly characterized as heat‐labile substances with a molecular mass of at least 10 kDa. Finally, venom of A. japonica, with a wide host range, was found to be much more toxic than that of Asobara rossica, which has a limited host range. These results reveal that A. japonica venom toxicity allows exploitation of a broader range of host insects because it is essential to overcome cellular immune responses of the host for successful parasitism.  相似文献   

6.
Endoparasitoid wasps introduce venom into their host insects during the egg-laying stage. Venom proteins play various roles in the host physiology, development, immunity, and behavior manipulation and regulation. In this study, we identified a venom protein, MmRho1, a small guanine nucleotide-binding protein derived from ovary in the endoparasitoid wasp Microplitis mediator and found that knockdown of its expression by RNA interference caused down-regulation of vitellogenin and juvenile hormone, egg production, and cocoons formation in the female wasps. We demonstrated that MmRho1 entered the cotton bollworm's (host) hemocytes and suppressed cellular immune responses after parasitism using immunofluorescence staining. Furthermore, wasp MmRho1 interacted with the cotton bollworm's actin cytoskeleton rearrangement regulator diaphanous by yeast 2-hybrid and glutathione s-transferase pull-down. In conclusion, this study indicates that MmRho1 plays dual roles in wasp development and the suppression of the host insect cellular immune responses.  相似文献   

7.
8.
9.
Insect microbe associations are diverse, widespread, and influential. Among the fitness effects of microbes on their hosts, defense against natural enemies is increasingly recognized as ubiquitous, particularly among those associations involving heritable, yet facultative, bacteria. Protective mutualisms generate complex ecological and coevolutionary dynamics that are only beginning to be elucidated. These depend in part on the degree to which symbiont‐mediated protection exhibits specificity to one or more members of the natural enemy community. Recent findings in a well‐studied defensive mutualism system (i.e., aphids, bacteria, parasitoid wasps) reveal repeated instances of evolution of susceptibility or resistance to defensive bacteria by parasitoids. This study searched for similar patterns in an emerging model system for defensive mutualisms: the interaction of Drosophila, bacteria in the genus Spiroplasma, and wasps that parasitize larval stages of Drosophila. Previous work indicated that three divergent species of parasitic wasps are strongly inhibited by the presence of Spiroplasma in three divergent species of Drosophila, including D. melanogaster. The results of this study uncovered two additional wasp species that are susceptible to Spiroplasma and two that are unaffected by Spiroplasma, implying at least two instances of loss or gain of susceptibility to Spiroplasma among larval parasitoids of Drosophila.  相似文献   

10.
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.  相似文献   

11.
12.
Polydnaviruses: potent mediators of host insect immune dysfunction   总被引:13,自引:0,他引:13  
Endoparasitic insects are used as biological control agents to kill many species of insect pest. One key to the success of parasitoids that develop in the hemocoel of their host is their ability to knock out the host's immune system, inducing a decline in the responsiveness of a variety of cellular and humoral components so that parasitoid eggs are not encapsulated. In many species parasitized by braconid and ichneumonid wasps, host immunosuppression appears to be mediated by polydnaviruses (PDVs) injected by the female parasitoid into the host hemocoel. The viruses exhibit a complex and intimate genetic relationship with the wasp, since viral sequences are integrated within the wasp's chromosomal DNA. Here Mark Lavine and Nancy Beckage summarize the current evidence for mechanisms of virally induced host immunosuppression in parasitized insects, as well as the roles of other factors including wasp ovarian proteins and venom components, in suppressing hemocyte-mediated and humoral immune responses. Interestingly, in some species, the PDV-induced host immunosuppression appears transitory, with older parasitoid larvae probably exploiting other mechanisms to protect themselves from the host's immune system during the final stages of parasitism. During the final stages of parasitism, the parasitoids likely exploit other mechanisms of immunoevasion via antigen masking, antigen mimicry, or production of active inhibitors of the hemocyte-mediated encapsulation response as well as inhibiting melanization.  相似文献   

13.
J Xie  S Butler  G Sanchez  M Mateos 《Heredity》2014,112(4):399-408
Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism.  相似文献   

14.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

15.
Polydnaviruses are mutualists of their parasitoid wasps and express genes in immune cells of their Lepidopteran hosts. Polydnaviral genomes carry multiple copies of viral ankyrins or vankyrins. Vankyrin proteins are homologous to IκB proteins, but lack sequences for regulated degradation. We tested if Ichnoviral Vankyrins differentially impede Toll-NF-κB-dependent hematopoietic and immune signaling in a heterologous in vivo Drosophila, system. We first show that hematopoiesis and the cellular encapsulation response against parasitoid wasps are tightly-linked via NF-κB signaling. The niche, which neighbors the larval hematopoietic progenitors, responds to parasite infection. Drosophila NF-κB proteins are expressed in the niche, and non cell-autonomously influence fate choice in basal and parasite-activated hematopoiesis. These effects are blocked by the Vankyrin I2-vank-3, but not by P-vank-1, as is the expression of a NF-κB target transgene. I2-vank-3 and P-vank-1 differentially obstruct cellular and humoral inflammation. Additionally, their maternal expression weakens ventral embryonic patterning. We propose that selective perturbation of NF-κB-IκB interactions in natural hosts of parasitic wasps negatively impacts the outcome of hematopoietic and immune signaling and this immune deficit contributes to parasite survival and species success in nature.  相似文献   

16.
Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host–microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host–pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host–pathogen interactions and provide some insights into this rapidly developing area of research.  相似文献   

17.
The Toll signaling pathway, first discovered in Drosophila, has a well-established role in immune responses in insects as well as in mammals. In Drosophila, the Toll-dependent induction of antimicrobial peptide production has been intensely studied as a model for innate immune responses in general. Besides this humoral immune response, Toll signaling is also known to activate blood cells in a reaction that is similar to the cellular immune response to parasite infections, but the mechanisms of this response are poorly understood. Here we have studied this response in detail, and found that Toll signaling in several different tissues can activate a cellular immune defense, and that this response does not require Toll signaling in the blood cells themselves. Like in the humoral immune response, we show that Toll signaling in the fat body (analogous to the liver in vertebrates) is of major importance in the Toll-dependent activation of blood cells. However, this Toll-dependent mechanism of blood cell activation contributes very little to the immune response against the parasitoid wasp, Leptopilina boulardi, probably because the wasp is able to suppress Toll induction. Other redundant pathways may be more important in the defense against this pathogen.  相似文献   

18.
The Drosophila parasitoid Asobara japonica Belokobylskij (Hymenoptera: Braconidae) has highly toxic venom that kills host larvae if its injection is not followed by an injection of lateral oviduct components along with egg‐laying. In the present study, the venoms of seven other Drosophila parasitoids (Asobara rossica, Asobara rufescens, Asobara pleuralis, Leptopilina heterotoma, Leptopilina japonica, Leptopilina ryukyuensis, and Leptopilina victoriae) are tested against three kinds of Drosophila species (i.e. Drosophila species that are suitable as host for focal parasitoids, those that are resistant to the parasitoids, and a cosmopolitan species, Drosophila simulans). Venoms of the three Asobara species are not toxic to any of Drosophila species, whereas those of the four Leptopilina species are toxic to some Drosophila species. The toxicity of venom varies among Leptopilina species, and the susceptibility to venom also varies among host Drosophila species. Furthermore, toxicity and paralytic effects of venom are not correlated. Because the toxicity of venom is not adaptive for parasitoids, it may be an inevitable side effect of some components that play an essential role in parasitism.  相似文献   

19.
The mannose receptor (MR) recognizes a range of carbohydrates present on the surface and cell walls of micro-organisms. The MR is primarily expressed on macrophages and dendritic cells and is involved in MR-mediated endocytosis and phagocytosis. In addition, the MR plays a key role in host defense and provides a link between innate and adaptive immunity. Herein, we will review the role of the MR in innate host defense as well as the recent evidence for its role in the adaptive response, for both humoral and cellular immune responses.  相似文献   

20.
Insect host-parasitoid interactions provide fascinating examples of evolutionary adaptations in which the parasitoid employs a variety of measures and countermeasures to overcome the immune responses of its host. Maternal factors introduced by the female wasps during egg deposition play an important role in interfering with cellular and humoral components of the host's immune defence. Some of these components actively suppress host immune components and some are believed to confer protection for the developing endoparasitoid by rather passive means. The Venturia canescens/Ephestia kuehniella parasitoid-host system is unique among other systems in that the cellular defence capacity of the host remains virtually intact after parasitization. This system raises some important questions that are discussed in this mini-review: If immune protection of the egg and the emerging larva is achieved by surface properties comprising glycoproteins and virus-like particles (VLPs) produced by the female wasp, why is the prophenoloxidase activating cascade blocked in parasitized caterpillars? Another question is the evolutionary origin of these particles, given that the functional role and structural features of V. canescens VLP proteins are more related to cellular proteins than to viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号