首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is the key pest of pome fruit in South Africa, and it’s control in apple and pear orchards relies on the application of insecticides and pheromone‐mediated mating disruption. Development of resistance to insecticides and placement of restrictions on the use of certain insecticides has made control of codling moth in South Africa increasingly problematic. The use of the sterile insect technique (SIT) as a control tactic for codling moth is under investigation as a potential addition to the current control strategy. We investigated the radiosensitivity of a laboratory strain of codling moth that was established from moths collected from commercial and organic orchards in the Western Cape, South Africa. Fecundity and fertility of this strain following radiation were consistent with values for the codling moth strain in the Canadian rearing facility in British Columbia. For both strains, the female codling moth was considerably more radiosensitive than the male. At a radiation dose of 100 Gy or higher, treated females were 100% sterile. The fertility of the South African strain was higher (86.3%) than for the Canadian strain (71.9%). This difference in fertility between the two strains was maintained when the dose of radiation was 100 Gy. However, the level of fertility was very similar between the two strains for doses ≥150 Gy. Therefore, based upon previously published work and the data from this study, an operational dose of 150 Gy is recommended for future codling moth SIT programmes in South Africa.  相似文献   

2.
The sterile insect technique (SIT) has been successfully applied against codling moth Cydia pomonella (Linnaeus) (Lepidoptera; Tortricidae) in British Columbia since 1992 where the mass‐rearing facility produces between 15 and 16 million moths per week. Due to the seasonality of this pest, the facility is only fully utilized for part of the year. The time and expense of implementing SIT against codling moth in South Africa may be substantially reduced if moths from Canada were sexually compatible with those from South Africa. In addition, because the pome fruit‐growing season in both countries is opposite, the programme in Canada might benefit by maintaining moth production year‐round and selling moths to South Africa. Semi‐field studies in small cages and release‐recapture studies were conducted in an unsprayed apple orchard in South Africa to assess mating compatibility of laboratory‐reared codling moth from Canada and wild codling moths from South Africa. The results suggest that Canadian codling moth males were equally attracted to calling Canadian and South African females despite the fact that Canadian moths had been transported (from Canada to South Africa) for 48 h as both pupae and adults. The data also suggest that at lower field temperatures Canadian moths were more active than South African moths. Results from the release‐recapture field trials indicated that Canadian and South African males were equally attracted to Canadian and South African females. These results suggest that codling moths from Canada and South Africa are fully compatible and indicate that Canadian moths can be used for SIT studies in South Africa. As these studies were conducted with moths from two very different climatic and time zones, it is proposed that populations of codling moth in other pome fruit production areas may also be compatible with the Canadian moths.  相似文献   

3.
  • 1 The present study focused on the dispersal patterns in the codling moth because such information is fundamental for determining the dynamics and genetics of the pest populations and for developing efficient management programmes.
  • 2 We implemented mark–release–recapture experiments (MRR) with both male and female codling moths of two laboratory and one wild population using a sex pheromone and pear ester as attractants in delta traps. The experiments were conducted in apple orchards in central Greece over two consecutive years (2007–2008). In addition, kinship assignment tests were applied on 303 genotyped individuals (11 microsatellite loci) from two contiguous apple orchards in central Greece aiming to estimate the dispersal of fertilized females.
  • 3 Both MRR and kinship analysis revealed that most male and female adults dispersed within 80 m, whereas some individuals moved at longer distances (maximum distance of approximately 200 m). A Bayesian analysis on microsatellite data revealed that exchange rates of codling moths between neighbouring orchards ranged among generations from 17.6 to 32.7%. The exchange rate between these orchards estimated by kinship analysis was 25.6% over all generations.
  • 4 The collected data confirm the view of the sedentary nature of coding moth and indicate that genotypes able to migrate at long distances are not present in the studied area. The availability of food resources within orchards during the growing season is one possible factor that could favour this sedentary behaviour.
  相似文献   

4.
The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a serious pest of pome fruit worldwide. In an effort to reduce the use of pesticides to control this pest, the sterile insect technique (SIT) is used or considered for use as a component of area‐wide integrated pest management programmes. Rearing codling moths through diapause has been shown to improve the competitiveness of sterile moths released in orchards, and provides management alternatives that would allow mass‐rearing facilities to increase their yearly production of sterile moths. Because radiosensitivity in insects can be influenced by numerous biological factors, laboratory tests were conducted to examine whether the response to increasing doses of radiation, as expressed in the fecundity and fertility of cohorts of moths, is similar for adult moths mass‐reared through diapause or through standard (non‐diapause) production protocols. Our data revealed that the effect of increasing doses of radiation on fecundity and fertility of codling moths reared through both rearing strategies was similar. In the case of fertility, this is a particularly important finding for the expanded application of codling moth SIT. If mass‐rearing facilities use year‐round diapause rearing, the dose required to treat the insects prior to release will be similar to that used when codling moths are reared through standard production protocols.  相似文献   

5.
Codling moths, Cydia pomonella (L.), have long been suspected of emerging from stacks of harvest bins in the spring and causing damage to nearby apple and pear orchards. With increased use of mating disruption for codling moth control, outside sources of infestation have become more of a concern for growers using pheromone based mating disruption systems. Studies were designed to provide information on bins as a source of codling moth and the pattern of codling moth emergence from stacks of bins. In these studies, codling moth larvae colonized wood harvest bins at a much higher frequency than harvest bins made of injection molded plastic (189 moths emerged from wood compared with five from plastic). There was no statistical difference in the number of moths infesting bins that had been filled with infested fruit compared with bins left empty at harvest. This suggests that codling moth enter the bins during the time that the bins are in the orchard before harvest. Emergence of laboratory reared adult codling moth from wood bins placed in stacks was found to be prolonged compared with field populations. Temperature differences within the bin stacks accounted for this attenuated emergence pattern. Covering bin stacks with clear plastic accelerated codling moth development in the upper levels of the stack. Codling moth emergence patterns from plastic-covered stacks more closely coincided with male flight in field populations. This information could be important in developing a technique for neutralizing codling moth-infested bins, and in understanding how infested bins may influence pest management in fruit orchards that are located near bin piles. Implications for control of codling moth in conventional orchards and in those using mating disruption as the principal component of an integrated pest management system include increased numbers of treatments directed at areas affected by infested bins.  相似文献   

6.
Studies were conducted with codling moth, Cydia pomonella L., to evaluate the mating status of male and female moths in apple, Malus domestica (Borkhausen), orchards treated with and without sex pheromone dispensers. Laboratory studies first examined the effect of multiple mating of male and female moths on female fecundity and egg fertility. Females that had mated three times had a significantly higher fecundity than singly mated moths. Sequential mating by male moths had no effect on the fecundity of female moths or egg fertility. However, male moth age did impact female fecundity, with significantly fewer eggs laid after mating with virgin 1- versus 3-d-old males. The mean size of the first spermatophore transferred by males was significantly larger than all subsequent spermatophores. Classifying spermatophores based on size was used in field sampling to categorize the mating status of the female's partner. The proportion of mated females with small spermatophores (partner had previously mated) was significantly higher in treated versus untreated orchards. The proportion of female moths caught in traps baited with pear ester that were virgin was low (相似文献   

7.
  1. Apple growers have pursued the use of exclusion netting to reduce pesticide inputs and maintain control of codling moth.
  2. It is uncertain if these nets provide a physical or behavioural behaviour, and if they prevent codling moth establishment.
  3. To address this, we conducted field trials testing the ability of commercial netting to exclude codling moth using small (3 trees) and large (48 trees) cages. Experiments were conducted to evaluate both the permeability by releasing marked sterile moths either inside or outside the small cages, and the establishment of wild codling moth in the large cages.
  4. Results from the small cage study showed that netting reduced codling moth movement out of the netted plots, but virtually prevented codling moth dispersal into the plots. Codling moth capture inside the large cage plots was significantly less than in uncaged plots, but no differences were found in codling moth damage at harvest.
  5. These results indicate that the netting is physically permeable to codling moth adults; however, it acts as a behavioural barrier to moth immigration. These outcomes agree with existing literature that net enclosures can provide a non-insecticidal tool to improve codling moth management, although it may not be a stand-alone technique.
  相似文献   

8.
The possibility of controlling the codling moth Cydia pomonella (Linnaeus) using an attract and kill approach as an alternative to chemical sprays with contact insecticides was investigated in widely separated orchards. The results of a 4‐year study have shown that, using an attract and kill approach, three applications/season kept infestation rates in treated orchards below the economic injury level except in one with a too high codling moth population density. The mean number of male codling moths/trap/week in attract and kill‐treated orchards was much lower in comparison with control orchards which were treated with the usual cover sprays of insecticides. The results also showed that the efficacy of attract and kill under orchard conditions decreased with time and the relationship between time effect and codling moth death rate was very strong. These data indicate that the attract and kill technique applied at a rate of three application per season resulted in good control of codling moth in well managed orchards in Syria.  相似文献   

9.
The influence of trap placement on catches of codling moth, Cydia pomonella L., was examined in a series of studies conducted in orchards treated with Isomate-C Plus sex pheromone dispensers. Mark-recapture tests with sterilized moths released along the interface of pairs of treated and untreated apple and pear plots found that significantly more male but not female moths were recaptured on interception traps placed in the treated plots. In a second test, significantly higher numbers of wild male and female moths were caught on interception traps placed in treated versus untreated plots within a heavily infested orchard. The highest numbers of male moths were caught on traps placed along the interior edge of the treated plots. Trap position had no influence on the captures of female moths. In a third test, north-south transects of sex pheromone-baited traps were placed through adjacent treated and untreated plots that received a uniform release of sterilized moths. Traps on the upwind edge of the treated plots caught similar numbers of moths as traps upwind from the treated plots. Moth catch was significantly reduced at all other locations inside versus outside of the treated plots, including traps placed on the downwind edge of the treated plot. In a fourth test, five apple orchards were monitored with groups of sex pheromone-baited traps placed either on the border or at three distances inside the orchards. The highest moth counts were in traps placed at the border, and the lowest moth counts were in traps placed 30 and 50 m from the border. In a fifth test, the proportion of traps failing to catch any moths despite the occurrence of local fruit injury was significantly higher in traps placed 50 versus 25 m from the border. The implications provided by these data for designing an effective monitoring program for codling moth in sex pheromone-treated orchards are discussed.  相似文献   

10.
Originally resident in southeastern Europe, the codling moth (Cydia pomonella L.) (Tortricidae) has achieved a nearly global distribution, being one of the most successful pest insect species known today. As shown in our accompanying study, mitochondrial genetic markers suggest a Pleistocenic splitting of Cydia pomonella into two refugial clades which came into secondary contact after de-glaciation. The actual distribution pattern shows, however, that Central European codling moths have experienced a geographic splitting into many strains and locally adapted populations, which is not reflected by their mitochondrial haplotype distribution. We therefore have applied, in addition to mitochondrial markers, an approach with a higher resolution potential at the population level, based on the analysis of amplification fragment length polymorphisms (AFLPs). As shown in the present study, AFLP markers elucidate the genetic structure of codling moth strains and populations from different Central European apple orchard sites. While individual genetic diversity within codling moth strains and populations was small, a high degree of genetic differentiation was observed between the analyzed strains and populations, even at a small geographic scale. One of the main factors contributing to local differentiation may be limited gene flow among adjacent codling moth populations. In addition, microclimatic, ecological, and geographic constraints also may favour the splitting of Cydia pomonella into many local populations. Lastly, codling moths in Central European fruit orchards may experience considerable selective pressure due to pest control activities. As a consequence of all these selective forces, today in Central Europe we see a patchy distribution of many locally adapted codling moth populations, each of them having its own genetic fingerprint. Because of the complete absence of any correlation between insecticide resistance and geographic or genetic distances among populations, AFLP markers do not have a prognostic value for predicting an outbreak of pesticide resistance in the field. By combining mitochondrial genetic data and AFLP analysis it was possible, however, to track the recent evolutionary history of Cydia pomonella on three different time scales: from population splitting in Pleistocene, to interbreeding of mitochondrial haplotypes in Holocene, to human-aided complete intermixing and splitting into many locally adapted populations in very recent times. The case of Cydia pomonella is reminiscent of examples of sympatric speciation and another example of a human-induced globally successful pest species.  相似文献   

11.
The performance of clear delta traps baited with 3.0 mg of pear ester, ethyl (E,Z)-2,4-decadienoate, and 5.0 ml of acetic acid in separate lures was compared with orange delta traps baited with a single lure containing 3.0 mg of both pear ester and the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) for codling moth, Cydia pomonella (L.), in apple, Malus domestica (Borkhausen). Residual analyses and field tests demonstrated that both the pear ester and acetic acid lures were effective for at least 8 wk. The two trap-lure combinations caught a similar number of total moths in an orchard treated with sex pheromone dispensers during short-term trials in 2008. However, the mean catch of female moths was significantly higher and male moths significantly lower in clear traps baited with pear ester and acetic acid versus orange traps baited with pear ester and codlemone. Season-long studies were conducted with these two trap-lure combinations in orchards treated with (n = 6) and without (n = 7) sex pheromone dispensers during 2009. The two trap-lure combinations caught similar numbers of moths in dispenser-treated orchards. In contrast, total catch was significantly higher (>2-fold) in the orange compared with the clear traps in untreated orchards. The clear caught >6-fold more females than the orange trap in both types of orchards. These studies suggest that deploying clear delta traps baited with pear ester and acetic acid can be an effective monitoring tool for female codling moth and an alternative to codlemone-baited traps in sex pheromone-treated orchards.  相似文献   

12.
甘肃、新疆、内蒙苹果蠹蛾成虫消长规律   总被引:2,自引:0,他引:2  
苹果蠹蛾Cydia pomonella(L.)是我国重要的果树害虫和检疫对象。2005年至2010年,本研究在甘肃、新疆及内蒙古的不同区县选取了16个果园,使用性信息素诱捕器对其中的苹果蠹蛾成虫发生规律进行长期监测。结果表明,苹果蠹蛾在西北地区每年发生2.5个世代;在正常气候条件下,3个成虫发生高峰分别出现在5月上旬、7月中下旬和8月中下旬,但不同地区及同一地区不同果园之间存在较大差异;化学防治、迷向防治等防治措施对苹果蠹蛾成虫捕获量的影响较大,因此生活史研究为主的监测并不适合在上述果园中开展。综合上述研究结果,未对苹果蠹蛾的季节动态进行准确的预测,需要对苹果蠹蛾除成虫外的其他虫态的季节性变化进行详细研究,并建议选择3个以上的果园进行监测,综合各个果园的监测结果并得出结论。  相似文献   

13.
Cydia pomonella (L.) was firstly reported in China in the 1950s and considered as one of the most serious invasive pest in fruit orchards of China. It spread rapidly from the original site in Xinjiang to other northwestern regions. The pest has further penetrated northeastern China since 2006. With its rapid invasion rate, most pome fruit production areas of China are being threatened. As yet there has been no research into the genetic diversity and structure of the codling moth population in China. We investigated the genetic variations of 12 C. pomonella populations collected from the main distribution regions (Xinjiang, Gansu and Heilongjiang Provinces) in China and compared them with one German and one Swiss population using eight microsatellites loci to infer the characteristics of genetic diversity and genetic structure. We observed sequential loss of genetic diversity and significant structuring associated with distribution but no significant correlation between genetic distance and geographic distance among northwestern populations. There was no genetic evidence for bottleneck effects in any of the populations. The results suggest that the loss of genetic diversity in C. pomonella populations resulted from the successive colonization of founder populations. Recent invasion history led to the lack of any bottleneck effect. The high level of population genetic structuring is related to the weak flight capacity of the codling moth and the human-aided dispersal rather than to geographic distance. These genetic data not only provide us with an understanding of the micro-evolutionary processes related to successful biological invasions, but also provide guidance for pest management strategies.  相似文献   

14.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

15.
Male and female codling moth, Cydia pomonella (L.), were monitored with passive interception traps (PI-traps) in apple orchards treated with sex pheromone dispensers. The proportion of mated females recaptured by PI-traps was significantly higher than the proportion released after the release of both sexes into a codling moth-infested orchard. However, no significant difference occurred between the proportion of mated females recaptured and released when only females were released into uninfested orchards. Replicated nine-tree apple plots situated either on the edge or in the center ofpheromone-treated apple orchards were monitored with PI-traps during first moth flight in 1995 and during both flights in 1996. Moths caught on PI-traps were predominately males. The first male moths were captured 7-10 d before females during the first flight in both years. Initial capture of virgin and mated females on PI-traps coincided in 1995. Mated females were captured 14 d after the first virgin females in 1996. The mean proportion of females that were mated ranged from 32 to 55% during the first flight and 85 to 92% during the second flight. Moth catch and fruit injury were significantly higher in the edge versus the center plots. The numbers of total and female moths caught with PI-traps were significantly correlated with fruit injury for each generation. The percentage of female moths caught on PI-traps that were mated was 32% lower and the mean oocyte load of all females was 42% higher in a pheromone-treated apple orchard than in the untreated crabapple grove monitored during May and June 1997.  相似文献   

16.
The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.  相似文献   

17.
  1. The infraorder Cicadomorpha is a diverse group comprising several species considered important pests of economic crops and species that may act as vectors of plant pathogens. In Europe, the gram-negative bacterium Xylella fastidiosa is one of the most important and severe insect-borne plant pathogens associated with the infraorder Cicadomorpha.
  2. Therefore, the knowledge of the abundance and diversity of native Cicadomorpha insect vectors related to the different agroecosystems is essential to design and implementing specific measures to control insect-borne plant pathogens.
  3. In this work, in two consecutive years (2018 and 2019), five almond orchards, five vineyards, five olive orchards, and five scrublands distributed in the North of Portugal were sampled in three different periods (early summer, summer and autumn) to investigate species composition, richness, and diversity of the Cicadomorpha community. Also, in 2019, five lemon orchards were sampled.
  4. A total of 6056 individuals were collected (2322 in 2018 and 3734 in 2019), belonging to 71 species of three families. Observing several considered pests or vectors of vicious pathogens within these species was possible. The confirmed vectors of X. fastidiosa (Philaenus spumarius (Linnaeus, 1758) and Neophilaenus campestris (Fallen, 1805)) were captured in all agroecosystems and, in general, with more abundance in autumn. The highest abundance, richness, and diversity of Cicadomorpha were observed in vineyards. However, these parameters (abundance, richness and diversity) significantly differed between the agroecosystem and sampling period.
  5. Further research on how the composition of the vegetation cover shapes the Cicadomorpha community is essential to implement strategies to reduce the spread of insect-borne pathogens if they are introduced into agroecosystems.
  相似文献   

18.
Codling moth is the main pest affecting apples and pears worldwide. Most pest control strategies used against this insect have relied on the use of broad‐spectrum insecticides which have led to non‐desirable effects like pesticide resistance, residues in the environment, human health concerns and the reduction of access to international markets. Therefore, alternative pest control strategies that would result in sustainable fruit production systems while taking care of the environment are strongly promoted. The use of the sterile insect technique has proven to be a valuable pest control tactic within area‐wide integrated pest management strategies, and its synergistic effect for Lepidoptera pests when combined with other biological control tactics such as parasitoids has been documented. The purposes of this research were to evaluate the response of an Argentinean codling moth strain to a sub‐sterilizing radiation dose of 100 Gy and to assess the acceptability and suitability of sterile codling moth eggs by the egg parasitoids, Trichogramma cacoeciae (Marchal) and Trichogramma nerudai (Pintureau and Gerding). Irradiated female moths survived better than irradiated male moths and non‐irradiated male and female moths. Also, the fecundity of irradiated female moths was reduced by more than 30% as compared to non‐irradiated ones whereas their fertility was close to zero. The F1 generation was male biased with a lower fertility (inherited sterility) than the parental generation. Trichogramma cacoeciae and T. nerudai parasitized both fertile and sterile eggs. However, there was a significant reduction in acceptability for sterile eggs. Trichogramma nerudai parasitized more eggs than T. cacoeciae, but egg acceptability for this species was proportionally lower than for T. cacoeciae especially on eggs oviposited by irradiated females. Development to adult of both parasitoids species was not substantially affected by the origin of the eggs and the wasps had acceptable levels of adult emergence, survival and fecundity. These results provided useful information on the potential for controlling the codling moth using egg parasitoids and the sterile insect technique in Argentina.  相似文献   

19.
  • 1 Biological control by conservation of native natural enemies can, at its best, reduce the need for pesticides and prevent detrimental effects upon the environment. The present study investigated the role of ground‐active generalist predators as natural enemies of two tortricid pests in apple orchards.
  • 2 Predation rates were compared on the well established codling moth Cydia pomonella and the emerging oriental fruit moth Grapholita molesta, which has recently switched hosts to apples.
  • 3 The present study hypothesized that the ground‐active predators consumed the two tortricid pests in significant numbers without preference, and attacked the pests at different developmental stages.
  • 4 Using diagnostic polymerase chain reaction on the gut contents of field‐caught ground‐active predators, no difference in predation rates was found on these two pests. Spiders were the most efficient predators of emergent adult moths in spring, whereas the carabid beetles, feeding on diapausing larvae, were important in the autumn.
  • 5 The temporal complementarity between spiders and carabid beetles, attacking different stages of the pests at different times of year, highlights the need for diverse predator assemblages to optimize biological control.
  相似文献   

20.
The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a serious pest of pome fruit worldwide and the sterile insect technique (SIT) provides an environmentally acceptable approach for its control. As the pest is present in both the southern and northern hemispheres it would be possible for a rearing facility in the northern hemisphere to supply sterile moths to an SIT programme in the southern hemisphere during the northern winter and vice versa. This could greatly improve the economics of moth production and the running costs of rearing facilities. However in order to develop this concept, it is important to assess if populations of codling moth from different geographical regions share mating compatibility. Twelve different laboratory and field populations from both hemispheres were sampled and field cage bisexual mating compatibility tests were carried out between selected combinations. The index of sexual isolation (ISI) and the female and male relative performance index (FRPI and MRPI, respectively) were calculated for each mating combination. In only two of the combinations was there a slight but significant deviation from random mating. There were also some significant differences in mating duration between the homotypic matings and the duration of a particular homotypic mating seemed to depend on the origin of the other population in the cage. It was concluded that there exist no barriers to mating between populations of codling moth from many parts of the world and that it would be feasible for sterile moths to be shipped from one rearing facility to SIT programmes in other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号