首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cancer stem cells (CSCs) are responsible for tumor initiation and progression. Toll-like receptors (TLRs) are highly expressed in cancer cells and associated with poor prognosis. However, a linkage between CSCs and TLRs is unclear, and potential intervention strategies to prevent TLR stimulation-induced CSC formation and underlying mechanisms are lacking. Here, we demonstrate that stimulation of toll-like receptor 3 (TLR3) promotes breast cancer cells toward a CSC phenotype in vitro and in vivo. Importantly, conventional NF-κB signaling pathway is not exclusively responsible for TLR3 activation-enriched CSCs. Intriguingly, simultaneous activation of both β-catenin and NF-κB signaling pathways, but neither alone, is required for the enhanced CSC phenotypes. We have further identified a small molecule cardamonin that can concurrently inhibit β-catenin and NF-κB signals. Cardamonin is capable of effectively abolishing TLR3 activation-enhanced CSC phenotypes in vitro and successfully controlling TLR3 stimulation-induced tumor growth in human breast cancer xenografts. These findings may provide a foundation for developing new strategies to prevent the induction of CSCs during cancer therapies.Despite incessant efforts to combat cancer over decades, breast cancer is still the second leading cause of death in women, remaining high with over 39 000 deaths in 2012 in the United States alone.1 Conventional interventions, such as radiation or chemotherapy, may eliminate the bulk of the tumor but spare rare aggressive cancer cells that have an exceptional capacity to survive, self-renew, and advance the malignancy. These residual tumor cells have recently been found to possess key stem-like properties and have thus been termed ‘cancer stem cells (CSCs)''.2, 3, 4, 5 Breast CSCs, characterized by expression of CD44high/CD24−/low surface markers, are proposed to be largely responsible for cancer progression and metastasis.3,6,7 These CD44high/CD24−/low cells possess stem cell-like properties and tumor-initiating capacity. Furthermore, these cells resist standard therapies3,6,8,9 and can be converted from non-CSC cells under certain conditions.10,11 Therefore, specific targeting of CSCs within a tumor will be imperative to prevent disease progression and recurrence.5 However, the conditions and mechanisms underlying CSC formation remain poorly understood. Although the majority of cancers arise from de novo oncogenic and epigenetic alterations, most tumors display signals of unremitting inflammatory activity,12 which occurs even in the absence of infection or autoimmunity.13Toll-like receptors (TLRs) are a key family of microbial sensors in the host innate and adaptive immunity as well as in tissue repair and regeneration. They are also involved in the inflammatory signaling triggered by endogenous macromolecules released by injured tissue.14,15 Ten TLRs are encoded by the human genome. TLRs detecting nucleic acids (TLR3, TLR7, TLR8, and TLR9) are localized in the endosomal compartment in nearly all cell types, while TLRs mainly detecting proteolipidic structures (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10) are exposed on the cell surface.14,16 In cancer, TLRs have emerged as important participants in tumorigenesis. TLR3, 4, 7, and 9 were overexpressed in 70, 72, 67, and 78% of patients with esophageal cancer.17 The -196 to -174del/del genotype of TLR2 may increase the risk of gastric cancer,18 and TLR4+896A>G polymorphism is a risk factor for non-cardia gastric carcinoma.19 Functions of epithelial-expressed TLR2 and 5 in promoting epithelial cell survival, proliferation, migration,20 and angiogenesis (TLR2 only)21 may be usurped by tumor cells to facilitate progression and metastasis. Although TLR3, 5, 7, 8, and 9 may achieve antitumor effects by converting immune tolerance into antitumor immunity,14 considerable discrepancies have been reported. For instance, high TLR3 expression in esophageal cancer cells was significantly associated with a higher probability of lymph-node metastasis and increased depth of invasion.17 Elevated TLR3 expression in breast cancer was also associated with poor prognosis.22,23Several clinical trials using TLR agonists for cancer treatment are currently in progress. Among all anticancer immunotherapy agents, TLR agonists are classified as the ones with highest potential. However, clinical outcomes are inconsistent and repeatedly disappointing.24 Specifically, high expectations were placed on TLR3 agonists for their ability to boost host immune systems to fight diseases. TLR3 is located in intracellular endosomes for the recognition of double-stranded RNA (dsRNA) and polyinosinic-polycytidylic acid (poly(I:C), a synthetic analog of dsRNA).25 In addition to upregulating immune response, a broader range of functions of TLR3 have been revealed recently, especially in stem cells. For instances, activation of TLR3 was found to amplify mesenchymal stem cell trophic factors and enhance therapeutic potency.26 Recently, Lee et al.27 also showed that TLR3 stimulation caused rapid and global changes in the expression of epigenetic modifiers to enhance chromatin remodeling and nuclear reprogramming when converting adult cells to induced pluripotent stem cells. Nevertheless, the role of TLR3 in cancer remains inconsistent, and its function in breast CSCs is unclear.Here, we demonstrate that TLR3 activation in breast cancer cells leads to a preferential enrichment of a subset of cells with CSC phenotypes in vitro and in vivo. Conventional NF-κB signaling is not fully responsible for the enhanced CSC properties. Unexpectedly, β-catenin pathway is required for the promotion of CSC phenotypes in breast cancer cells following TLR3 activation. Our results provide new tantalizing strategies to effective target breast and other CSCs with elevated TLR3 expression to prevent progression and relapse.  相似文献   

2.
3.
4.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

5.
Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14+TLR4, whereas cancerous tissues were CD14+TLR4+, by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14+TLR4+ colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14+TLR4) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.Colorectal tumorigenesis proceeds via the accumulation of genetic and epigenetic alterations that promote unlimited cell proliferation, self-sufficient growth signaling, neovascularization, tissue invasion, and resistance to cell death.1 The transformation of normal epithelium into colorectal carcinomas (CRC) is associated with the progressive inhibition of apoptosis; this confers a selective advantage for tumor cell survival and chemoresistance.2, 3 It is generally believed that sufficient epithelial apoptosis may hamper colon cancer formation in terms of incidence and growth rate.4, 5, 6 Direct evidence for this was recently reported in mice deficient in pro-apoptotic molecules.7, 8 To date, the regulatory mechanisms of physiological apoptosis to eliminate premalignant cells in the gut remain incompletely understood.Intestinal homeostasis is maintained by the dynamic, yet strictly regulated, turnover of epithelial cells. An imbalance in epithelial death versus survival/proliferative responses may lead to barrier dysfunction, chronic inflammation, and tumorigenesis.9, 10 Accumulating evidence indicates that gut microbiota and bacterial lipopolysaccharide (LPS) have critical roles in epithelial cell renewal under baseline conditions and on injury,11, 12 and are involved in the pathogenesis of colitis-associated CRC as well.13, 14, 15 Given the juxtaposition of commensal bacteria and the gut mucosa, it has been assumed that normal epithelial cells are not equipped with LPS receptor complexes (CD14/TLR4/MD2) or express altered forms of receptors and signaling molecules to achieve immunotolerance.15 Constitutive expression of CD14 was reported in the presence of negligible-to-low levels of Toll-like receptor 4 (TLR4) in normal human colonocytes,16, 17, 18 whereas strong TLR4 immunoreactivity was detected in CRC.18, 19 Nevertheless, divergent cellular responses to LPS (death versus survival) have been reported among human CRC cell lines. Several laboratories, using Caco-2 cells, have described increases in apoptotic cell death following apical LPS challenge,20, 21 whereas others have documented enhanced survival and proliferative responses of HT29 and SW480 cells to LPS.22, 23 Here we hypothesize that differing expression patterns of LPS receptor subunits on epithelial surfaces may have a determining role in cell death versus survival.CD14, as the membrane-bound subunit of LPS receptor complex and lacking a cytoplasmic tail, has traditionally been regarded as merely a binding component for transferring LPS to TLR4. TLR4 subsequently activates downstream adaptors and signaling pathways, such as myeloid differentiation factor (MyD88), mitogen-activated protein kinases (MAPKs), inhibitor of κB (IκB)/nuclear factor-κB (NFκB), and interferon regulatory factor 3 (IRF3).24, 25 Recent findings in monocytes have indicated that LPS/CD14 binding triggers a cascade of lipid messenger signals before TLR4 trafficking to lipid rafts for complex formation. CD14-dependent lipid signaling includes the conversion of membranous phosphatidylcholine (PC) to diacylglcerol by PC-specific phospholipase C (PC-PLC) and the activation of sphingomyelinase (SMase) for sphingolipid metabolism and ceramide production. This process leads to the phosphorylation of protein kinase C (PKC) ζ, which recruits TLR4 to interact with CD14 (Cuschieri et al.26 and Triantafilou et al.27). Lipid messengers, such as sphingolipids and ceramides, and their downstream PKCζ signals have been implicated in pro-apoptotic pathways and are considered tumor suppressors.28, 29, 30 Decreased SMase activity and PKCζ levels have been observed in human colorectal tumors, correlated with poor prognosis.31, 32 In contrast, the TLR4/MyD88 and IκB/NFκB pathways are associated with anti-apoptotic and hyperproliferative responses.5, 33, 34, 35 Reduced colorectal tumor formation has been documented in TLR4(−/−), MyD88(−/−), and epithelial-specific IκB kinase β-deficient mice as compared with wild-type (WT) mice.5, 19, 36 These findings led us to speculate that the expression of CD14 and TLR4 on epithelial cell surfaces may provide antagonistic signals to counteract apoptotic responses to LPS and to influence tumor progression.The aims of this study were to (1) investigate the expression patterns of LPS receptor subunits in normal and cancerous colonic epithelia in human and murine tissues; (2) examine the individual roles of CD14 and TLR4 in epithelial apoptosis and tumor formation using a mouse model of colitis-associated CRC; (3) assess the involvement of CD14-mediated lipid messengers and/or TLR4-dependent signaling in the mechanism of LPS-induced apoptosis using human carcinoma cell lines; and (4) evaluate whether TLR4 has an opposing role against CD14-mediated apoptosis to promote tumor cell survival.  相似文献   

6.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

7.
8.
9.
10.
11.
Cotton rats (Sigmodon hispidus) have been used to study a variety of infectious agents, particularly human respiratory viral pathogens. During the course of comprehensive pathologic evaluations of aging breeders from our breeding colony, 6 of 22 (27%) female cotton rats had histologic evidence, limited to the lungs, of embolized cells that were confirmed to be trophoblastic in origin by HSD3B1 immunoreactivity. When pulmonary trophoblast emboli were numerous, they usually were associated with additional histologic findings in the lungs, including pulmonary edema and hemorrhage, endothelial hypertrophy, fibrinoid vascular necrosis, and abundant alveolar macrophages containing fresh fibrin and hemolyzing erythrocytes. Of the 6 cotton rats with pulmonary trophoblast emboli, 5 (83%) were at 8 to 18 d of the 27-d gestation period, with the greatest number of emboli per lung present between days 10 through 14. The remaining cotton rat had a focal pulmonary trophoblast embolus and was not pregnant but had delivered a litter 3 mo previously. Three other cotton rats in either the early or late stages of gestation showed no histologic evidence of pulmonary trophoblast deportation. This report is the first to document pulmonary trophoblast emboli in cotton rats. This finding suggests that cotton rats may be an alternative animal model for the study of normal and aberrant trophoblast deportation in routine pregnancies and gestational pathologic conditions in women.Abbreviations: HSD3B1, hydroxyl-C-5-steroid dehydrogenaseCotton rats (Sigmodon hispidus) are a relevant animal model for the study of human respiratory23 viral pathogens, with increasing usage by academic and industrial institutions. The hemochorial placentation in Sigmodontinae22 is similar to that of humans and several laboratory animal species including mice, rats, hamsters, rabbits, guinea pigs, chinchillas, and nonhuman primates.10,20,40,42,44,49 In these species, one or more layers of analogous trophoblast types comprise the interhemal barrier between maternal and fetal blood supplies. Placental trophoblasts perform a number of critical functions during gestation, including mediation of uterine implantation and invasion, nutrient exchange, regulation of maternal blood flow, and hormone production.1,19,26-28,35,38,46,47As a consequence of their inherent invasiveness, placental trophoblasts migrate into maternal uterine blood vessels, after which syncytiotrophoblasts (syncytial knots) are normally deported daily to the lungs in humans.2,3,17 Deportation increases with frequency as gestation progresses,3,4 with gestational pathologic conditions such as preeclampsia and eclampsia,2,3,18,36 and after cesarean sections50 and abortions.48 The current thinking is that these syncytial knots undergo programmed cell death and apoptotic shedding during routine pregnancy, in contrast to conditions like preeclampsia and eclampsia, during which aberrant intervillous hemodynamics resulting in hypoxia favor necrosis and associated inflammation.18,25,29,30 In addition, spontaneous trophoblast emboli have been documented in the lungs and a few other tissues, including uterus, adrenal gland, spleen, and liver of chinchillas,6,11,52 hamsters,7,41 and porcupines.24 Experimentally, trophoblast invasion has been further studied in mice8,9 and hamsters.5 To our knowledge, pulmonary trophoblast emboli in cotton rats have not previously been reported.Pairs of cotton rat breeders were maintained for the production of animals to be used in various studies investigating human respiratory viruses, including measles, respiratory syncytial, and parainfluenza viruses. During the course of comprehensive pathologic evaluations of aging breeders, 6 female cotton rats were incidentally found to have pulmonary trophoblast emboli. The purposes of the present case series were to characterize the embolized trophoblasts and associated pulmonary histopathology in these cotton rats and to correlate the incidence with gestational stage.  相似文献   

12.
The purpose of this study was to conduct a comprehensive evaluation of the vascular supply to the femoral head, including the vessels that give rise to the terminal perfusing branches. Using a casting agent, we highlighted the anatomy of the external iliac and ischiatic arteries with their associated branches after anatomic dissection of 24 hips from 12 Leghorn chickens. We confirmed published findings regarding perfusion of the femoral head and identified 3 previously undescribed arterial branches to this structure. The first branch (the acetabular branch of the femoralis artery) was supplied by the femoralis artery and directly perfused the acetabulum and femoral head. The second branch (the lateral retinacular artery) was a tributary of the femoralis artery that directly supplied the femoral head. Finally, we found that the middle femoral nutrient artery supplies a previously undescribed ascending intraosseous branch (the ascending branch of the middle femoral nutrient artery) that perfuses the femoral head. Precise understanding of the major vascular branches to the femoral head would allow for complete or selective ligation of its blood supply and enable the creation of a reproducible bipedal model of femoral head osteonecrosis.Like humans, chickens are bipedal animals that rely on the hip joint to absorb the majority of the body''s weight. This anatomy, in concert with their high activity level, makes chickens an attractive model for the study of osteonecrosis of the femoral head in humans. The vast majority of animal research on osteonecrosis of the femoral head has been performed on quadrupedal animals,3,4,10,19,25,26,28,29,31,36,37,41,51,52 thus limiting its application to bipedal species because most quadruped models fail to progress to end-stage mechanical collapse similar to that in humans.6Avascular necrosis is the death of bone that occurs from ischemia due to disruption of the vascular supply to bone through direct or indirect mechanisms.38 Avascular necrosis should be differentiated from the broader term of osteonecrosis, which refers to bone death in general.32 Causes of femoral head osteonecrosis include direct and indirect disruption of vascular supply (traumatic injury, intravascular coagulation, extrinsic compression) as well as changes in cellular differentiation and cellular apoptosis.4,7,12,15,17,18,24,30-32,38,49,50 Accordingly, causes of osteonecrosis are both traumatic and nontraumatic.16,31,32The arterial anatomy in the chicken hindlimb has been outlined by several authors.20,22,27,35,42,44,45 Briefly, the external iliac and ischiatic artery arise from the abdominal aorta to provide blood supply to the chicken hind limb. The external iliac artery has 2 main branches—the femoralis and femoral circumflex arteries—that distribute blood to the chicken hindlimb. The ischiatic artery provides 3 main branches: the trochanteric artery, superior femoral nutrient artery, and middle femoral nutrient artery. Although the terminal vascular supply to the femoral head of Leghorn and Broiler chickens has been described,46,47 the origin of these terminal arteries with reference to the ischiatic and femoralis arteries and their respective branches has not been addressed. The current study will describe the blood vessels that feed these terminal branches to the chicken femoral head.  相似文献   

13.
Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development.Neurodegeneration leads to loss of neurons and thus to severe and irreparable damage of the brain. A common histopathological feature in postmortem brains of patients with neurodegenerative diseases such as Parkinson''s or Alzheimer''s disease is the presence of ubiquitin-laden protein deposits.1, 2, 3 These deposits implicate the ubiquitin proteasome system (UPS) in neurodegeneration. In addition to histopathological clues, genetic evidence demonstrates that erroneous UPS components have detrimental effects on the developing and adult brain resulting in neurodegenerative disorders.4,5The UPS is responsible for the posttranslational modification of proteins by ubiquitin, which requires an enzymatic cascade.6 The E3 ubiquitin ligases specifically recognize the substrate proteins and mediate their ubiquitination, which can result in their degradation that ensures the homeostasis in cells or in non-proteolytic signaling events.7,8 The largest group of E3 ligases constitutes the RING (really interesting new gene) ligases, which serve as scaffold proteins to recruit both the substrate and the E2 ubiquitin-conjugating enzyme that binds to the RING domain,9 facilitating the transfer of ubiquitin from the E2 to the substrate.Although there are several hundred E3 ligases,10 only a few have been studied so far in the context of neuronal survival or neurodegeneration.11, 12, 13, 14, 15 Among those, mahogunin ring finger-1 (MGRN1) has been implicated in an age-dependent spongiform encephalopathy characterized in a mouse model.15In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), the homolog of MGRN1. We described that RNF157, which is predominantly expressed in the brain, regulates neuronal survival and morphology in cultured neurons. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as a substrate and a downstream component in RNF157-regulated neuronal survival. Also, we demonstrated that nuclear Fe65 together with the RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) triggers apoptosis. Taken together, we described that the E3 ligase RNF157 acts in different aspects of neuronal development.  相似文献   

14.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

15.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

16.
17.
Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.Mammalian cell death proceeds through a highly regulated program called apoptosis that is highly dependent on the mitochondria.1 Mitochondrial outer membrane (MOM) multiple apoptotic stresses permeabilize the MOM, resulting in the release of apoptogenic factors including cytochrome c, Smac, AIF, and endoG.2, 3, 4 Released cytochrome c activates Apaf-1, which assists in caspase activation. Then, activated caspases cleave cellular proteins and contribute to the morphological and biochemical changes associated with apoptosis. Bcl-2 family proteins control a crucial apoptosis checkpoint in the mitochondria.2, 5, 6, 7 Multidomain proapoptotic Bax and Bak are essential effectors responsible for the permeabilization of the MOM, whereas anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1 preserve mitochondrial integrity and prevent cytochrome c efflux triggered by apoptotic stimuli. The third Bcl-2 subfamily of proteins, BH3-only molecules (BH3s), promotes apoptosis by either activating Bax/Bak or inactivating Bcl-2/Bcl-xL/Mcl-1.8, 9, 10, 11, 12 Upon apoptosis, the ‘activator'' BH3s, including truncated Bid (tBid), Bim, and Puma, activate Bax and Bak to mediate cytochrome c efflux, leading to caspase activation.8, 11, 12 Conversely, antiapoptotic Bcl-2, Bcl-xL, and Mcl-1 sequester activator BH3s into inert complexes, which prevents Bax/Bak activation.8, 9 Although it has been proposed that Bax and Bak activation occurs by default as long as all of the anti-apoptotic Bcl-2 proteins are neutralized by BH3s,13 liposome studies clearly recapitulate the direct activation model in which tBid or BH3 domain peptides derived from Bid or Bim induce Bax or Bak oligomerization and membrane permeabilization.12, 14, 15Numerous studies have demonstrated a critical role for Bax in determining tumor cell sensitivity to drug induction and in tumor development. Bax has been reported to be mutated in colon16, 17 and prostate cancers,18, 19 contributing to tumor cell survival and promoting clonal expansion. Bax has been shown to restrain tumorigenesis20 and is necessary for tBid-induced cancer cell apoptosis.21 Loss of Bax has been reported to promote tumor development in animal models.22 Bax knockout (KO) renders HCT116 cells resistant to a series of apoptosis inducers.23, 24, 25 p53 has been reported to be a tumor suppressor,26 and its mutant can cause chemoresistance in cancer cells.27, 28, 29 Moreover, p53 is often inactivated in solid tumors via deletions or point mutations.30, 31 Thus, it is necessary to find an efficient approach or agent to overcome chemoresistance caused by Bax and/or p53 mutants.Few studies have focused on the role of Bak in tumor cell apoptosis and cancer development. Bak mutations have only been shown in gastric and colon cancer cells.32 Some studies have revealed that Bak is a determinant of cancer cell apoptosis.33, 34 Some studies have even demonstrated that Bak renders Bax KO cells sensitive to drug induction.33, 35 In this study, we are the first group to show that tBid induces Bak activation and the release of AIF and endoG in colon cancer cells, which causes cellular apoptosis independent of Bax/p53. We also found that caspase-3 is activated in apoptosis. Interestingly, downstream caspase-3 can strengthen Bak activation and the release of AIF and endoG during apoptosis via a feedback loop. Furthermore, we reveal that Akt upregulates apoptosis progression. These results will help us to better understand the function of mitochondrial apoptotic protein members in apoptosis and cancer therapies. Furthermore, our experiments may provide a theoretical basis for overcoming chemoresistance in cancer cells.  相似文献   

18.
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits diverse beneficial properties, including antiviral activity. Autophagy is a cellular process that is involved in the degradation of long-lived proteins and damaged organelles. Recent evidence indicates that modulation of autophagy is a potential therapeutic strategy for various viral diseases. In the present study, we investigated the effect of EGCG on hepatitis B virus (HBV) replication and the possible involvement of autophagy in this process. Our results showed that HBV induced autophagosome formation, which was required for replication of itself. However, although EGCG efficiently inhibited HBV replication, it enhanced, but not inhibited, autophagosome formation in hepatoma cells. Further study showed that HBV induced an incomplete autophagy, while EGCG, similar to starvation, was able to induce a complete autophagic process, which appeared to be unfavorable for HBV replication. Furthermore, it was found that HBV induced an incomplete autophagy by impairing lysosomal acidification, while it lost this ability in the presence of EGCG. Taken together, these data demonstrated that EGCG treatment opposed HBV-induced incomplete autophagy via enhancing lysosomal acidification, which was unfavorable for HBV replication.Macroautophagy (hereafter autophagy) is a conserved cellular process through which cytoplasmic materials are sequestered into double-membrane vacuole called autophagosomes and destined for degradation through fusion with lysosomes.1, 2, 3 Accumulating evidence indicates that autophagy is involved in diverse pathophysiological processes, including cancer, neurodegenerative disorders, and cardiovascular diseases.4, 5, 6, 7 Recent studies show that autophagy has an important role in regulating the replication of many viruses, including dengue virus, coxsackievirus B3 virus (CVB3), hepatitis C virus (HCV), and influenza virus A.8, 9, 10, 11, 12 Several investigations also indicate that autophagy has an important role in hepatitis B virus (HBV) replication: autophagy is induced by HBV and is required for HBV replication; however, the underlying mechanisms remains still unclear.13, 14, 15, 16Green tea is the most commonly consumed beverage worldwide. In traditional Chinese medicine, green tea is considered to have beneficial properties for human health, including antitumorigenic, antioxidant, and anti-inflammatory activities.17, 18, 19 Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and appears to be the primary active ingredient accounting for the latter''s biological effects. In recent years, EGCG is revealed to display inhibitory effect on diverse viruses, such as human immunodeficiency virus type-1, Epstein–Barr virus (EBV), and HCV.20, 21, 22, 23, 24, 25 Of interest, EGCG is also found to regulate autophagy formation, although it seems to be cell-type specific.26, 27, 28, 29, 30 Given the potential therapeutic effect of EGCG on viral infection and its role in autophagy regulation, we investigated the effect of EGCG on HBV replication and the possible involvement of autophagy in this process.Here we showed that HBV induced an incomplete autophagy that was required for HBV replication; however, a complete autophagic process induced by EGCG appeared to be unfavorable for HBV replication. Further study showed that HBV hampered the autophagic flux by impairing lysosomal acidification, which could be opposed by the treatment of EGCG.  相似文献   

19.
Ulcerative dermatitis (UD) is a common condition in C57BL/6 mice and strains with this background. The etiology of UD is unclear but appears to have a genetic component associated with the C57BL/6 strain and has been reported as secondary to a variety of conditions. Treatment is unrewarding, resulting in euthanasia in many cases. In the present study we compared 3 topical treatments against spontaneous UD in mice with a C57BL/6 background. In total, 301 mice of both sexes were included in this study, and the tested treatments comprised bacitracin–neomycin sulfate–polymixin B sulfate ointment twice daily, 10% povidone–iodine ointment plus 1% silver sulfadiazine cream once daily, and 0.005% sodium hypochlorite once daily. Lesion healing was defined as complete skin reepithelialization with or without hair regrowth. Sex, age, lesion location, and type and length of treatment were analyzed by using univariate and multivariate logistic regression. Of the 79 mice treated with triple-antibiotic ointment, 27 (34%) healed, compared with 43 of the 125 (34%) treated with povidone–iodine and sulfadiazine and 69 of the 97 (71%) treated with hypochlorite. Lesion size and treatment with 0.005% sodium hypochlorite were the only significant predictors of healing; all other variables were not statistically significant in multivariate analysis. We conclude that 0.005% sodium hypochlorite is an effective topical treatment alternative for UD in C57BL/6 mice and strains on this background, and a favorable prognosis depends on the early identification and treatment of those lesions.Abbreviations: B6, C57BL/6; UD, ulcerative dermatitisUlcerative dermatitis (UD) is a common condition in C57BL/6 (B6) mice and strains with a B6 background.1,21 Early lesions are characterized by small skin erosions that can affect any part of the body but are typically found between the scapulae. Usually these lesions rapidly progress to form large, irregular areas of ulcerated skin.1 The condition can be very pruritic, resulting in self-mutilation, skin degloving, and exposure of the subcutaneous tissues and, in some cases, musculature.1 Common sequelae in mice that recover from this disease are marked lymphadenopathy and splenomegaly due to reactive immune modulation or activation, which can confound research results.21,31 When UD affects extensive areas and then heals, contracture and scarring of the skin cause tension that alters normal posture and ambulation.1Primary (idiopathic) UD is diagnosed by ruling out other conditions that cause dermatitis (secondary) in laboratory mice, such as allergy to fur mites,8,18 fight wounds, staphylococcal skin infections,20,32 phenotype,19,21,31 and experimental manipulation.13,22,33 The exact etiology of UD remains undetermined but seems to be multifactorial.9 Proposed etiologies include behavioral,10,11,34,35 immune-complex–induced vasculitis,1 cellular oxidative injury,21 and vitamin A toxicity.31 Calorie-restricted diets, providing 60% of the average calorie intake of the respective unrestricted group, seem to reduce ulcerative dermatitis,28 whereas high-fat diets (35% crude fat) appear to exacerbate the condition.27 UD has been reported to affect more female than male mice, with the highest incidence in mice older than 1 y, but UD can also occur in young mice.1,19,31 Although UD occurs throughout the year, some authors report a peak incidence during spring and fall, whereas others note increased case numbers during the summer months.19,31Attempts to find a cure for UD have not found a treatment that is completely effective. Treatment typically is unrewarding, resulting in euthanasia in many cases.21 Dietary supplementation with vitamin E reportedly has some efficacy favoring skin reepithelization in mice with UD.21 However, a recent study using vitamin E as a diet supplement to prevent the occurrence of UD yielded contradictory results.24 In that study, mice fed a vitamin-E–fortified diet since weaning were more likely to develop UD than were mice fed a regular diet. However, to achieve the desire amount of vitamin E, the fat content of the diet had to be increased; high dietary fat is known to exacerbate UD.24,27 Other studies have shown systemic administration of maropitant citrate reduces the size of UD lesions in mice by decreasing scratching,35 and the oral administration of ibuprofen appears to help speed the healing of skin lesions by reducing inflammation and pain.11 Topical and systemic antibiotics, corticosteroids, antihistamines, and lidocaine are poorly effective in the treatment of UD.1,19,21,31 Among topical treatments, caladryl lotion, chlorhexidine, and cyclosporine appear to be the most effective in treating UD.7,12,23 Toenail trimming has been reported as effective at reducing self-trauma due to scratching in UD, thus helping to speed healing.26,29In the present study, we compared 3 topical treatments against spontaneous UD in mice with a B6 background.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号